3.33.51
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [A] time = 2.22, antiderivative size = 36, normalized size of antiderivative = 1.16,
number of steps used = 4, number of rules used = 4, integrand size = 237, = 0.017, Rules used
= {6688, 12, 6711, 32}
Antiderivative was successfully verified.
[In]
Int[(-4 + 6*x - 2*x^2 + (2*x - x^2 + x*Log[x])*Log[24 - 12*x + 12*Log[x]] + (-4 + 4*x - x^2 + (-2 + x)*Log[x])
*Log[24 - 12*x + 12*Log[x]]*Log[1/((-8 + 4*x)*Log[24 - 12*x + 12*Log[x]]^2)])/((-20*x^2 + 20*x^3 - 5*x^4 + (-1
0*x^2 + 5*x^3)*Log[x])*Log[24 - 12*x + 12*Log[x]] + (-40*x + 40*x^2 - 10*x^3 + (-20*x + 10*x^2)*Log[x])*Log[24
- 12*x + 12*Log[x]]*Log[1/((-8 + 4*x)*Log[24 - 12*x + 12*Log[x]]^2)] + (-20 + 20*x - 5*x^2 + (-10 + 5*x)*Log[
x])*Log[24 - 12*x + 12*Log[x]]*Log[1/((-8 + 4*x)*Log[24 - 12*x + 12*Log[x]]^2)]^2),x]
[Out]
-1/5*1/(1 + x/Log[-1/4*1/((2 - x)*Log[12*(2 - x + Log[x])]^2)])
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 32
Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6711
Int[(u_)*((a_.)*(v_)^(p_.) + (b_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(p*w*D[v, x] - q*v*D[w
, x])]}, Dist[c*p, Subst[Int[(b + a*x^p)^m, x], x, v*w^(m*q + 1)], x] /; FreeQ[c, x]] /; FreeQ[{a, b, m, p, q}
, x] && EqQ[p + q*(m*p + 1), 0] && IntegerQ[p] && IntegerQ[m]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 31, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(-4 + 6*x - 2*x^2 + (2*x - x^2 + x*Log[x])*Log[24 - 12*x + 12*Log[x]] + (-4 + 4*x - x^2 + (-2 + x)*L
og[x])*Log[24 - 12*x + 12*Log[x]]*Log[1/((-8 + 4*x)*Log[24 - 12*x + 12*Log[x]]^2)])/((-20*x^2 + 20*x^3 - 5*x^4
+ (-10*x^2 + 5*x^3)*Log[x])*Log[24 - 12*x + 12*Log[x]] + (-40*x + 40*x^2 - 10*x^3 + (-20*x + 10*x^2)*Log[x])*
Log[24 - 12*x + 12*Log[x]]*Log[1/((-8 + 4*x)*Log[24 - 12*x + 12*Log[x]]^2)] + (-20 + 20*x - 5*x^2 + (-10 + 5*x
)*Log[x])*Log[24 - 12*x + 12*Log[x]]*Log[1/((-8 + 4*x)*Log[24 - 12*x + 12*Log[x]]^2)]^2),x]
[Out]
x/(5*(x + Log[1/(4*(-2 + x)*Log[12*(2 - x + Log[x])]^2)]))
________________________________________________________________________________________
fricas [A] time = 0.62, size = 27, normalized size = 0.87
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x-2)*log(x)-x^2+4*x-4)*log(12*log(x)-12*x+24)*log(1/(4*x-8)/log(12*log(x)-12*x+24)^2)+(x*log(x)-x
^2+2*x)*log(12*log(x)-12*x+24)-2*x^2+6*x-4)/(((5*x-10)*log(x)-5*x^2+20*x-20)*log(12*log(x)-12*x+24)*log(1/(4*x
-8)/log(12*log(x)-12*x+24)^2)^2+((10*x^2-20*x)*log(x)-10*x^3+40*x^2-40*x)*log(12*log(x)-12*x+24)*log(1/(4*x-8)
/log(12*log(x)-12*x+24)^2)+((5*x^3-10*x^2)*log(x)-5*x^4+20*x^3-20*x^2)*log(12*log(x)-12*x+24)),x, algorithm="f
ricas")
[Out]
1/5*x/(x + log(1/4/((x - 2)*log(-12*x + 12*log(x) + 24)^2)))
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x-2)*log(x)-x^2+4*x-4)*log(12*log(x)-12*x+24)*log(1/(4*x-8)/log(12*log(x)-12*x+24)^2)+(x*log(x)-x
^2+2*x)*log(12*log(x)-12*x+24)-2*x^2+6*x-4)/(((5*x-10)*log(x)-5*x^2+20*x-20)*log(12*log(x)-12*x+24)*log(1/(4*x
-8)/log(12*log(x)-12*x+24)^2)^2+((10*x^2-20*x)*log(x)-10*x^3+40*x^2-40*x)*log(12*log(x)-12*x+24)*log(1/(4*x-8)
/log(12*log(x)-12*x+24)^2)+((5*x^3-10*x^2)*log(x)-5*x^4+20*x^3-20*x^2)*log(12*log(x)-12*x+24)),x, algorithm="g
iac")
[Out]
Timed out
________________________________________________________________________________________
maple [C] time = 0.68, size = 283, normalized size = 9.13
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((x-2)*ln(x)-x^2+4*x-4)*ln(12*ln(x)-12*x+24)*ln(1/(4*x-8)/ln(12*ln(x)-12*x+24)^2)+(x*ln(x)-x^2+2*x)*ln(12
*ln(x)-12*x+24)-2*x^2+6*x-4)/(((5*x-10)*ln(x)-5*x^2+20*x-20)*ln(12*ln(x)-12*x+24)*ln(1/(4*x-8)/ln(12*ln(x)-12*
x+24)^2)^2+((10*x^2-20*x)*ln(x)-10*x^3+40*x^2-40*x)*ln(12*ln(x)-12*x+24)*ln(1/(4*x-8)/ln(12*ln(x)-12*x+24)^2)+
((5*x^3-10*x^2)*ln(x)-5*x^4+20*x^3-20*x^2)*ln(12*ln(x)-12*x+24)),x,method=_RETURNVERBOSE)
[Out]
2/5*x/(-I*Pi*csgn(I/(x-2))*csgn(I/ln(12*ln(x)-12*x+24)^2)*csgn(I/ln(12*ln(x)-12*x+24)^2/(x-2))+I*Pi*csgn(I/(x-
2))*csgn(I/ln(12*ln(x)-12*x+24)^2/(x-2))^2+I*Pi*csgn(I/ln(12*ln(x)-12*x+24)^2)*csgn(I/ln(12*ln(x)-12*x+24)^2/(
x-2))^2+I*Pi*csgn(I*ln(12*ln(x)-12*x+24))^2*csgn(I*ln(12*ln(x)-12*x+24)^2)-2*I*Pi*csgn(I*ln(12*ln(x)-12*x+24))
*csgn(I*ln(12*ln(x)-12*x+24)^2)^2+I*Pi*csgn(I*ln(12*ln(x)-12*x+24)^2)^3-I*Pi*csgn(I/ln(12*ln(x)-12*x+24)^2/(x-
2))^3-4*ln(2)+2*x-2*ln(x-2)-4*ln(ln(12*ln(x)-12*x+24)))
________________________________________________________________________________________
maxima [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x-2)*log(x)-x^2+4*x-4)*log(12*log(x)-12*x+24)*log(1/(4*x-8)/log(12*log(x)-12*x+24)^2)+(x*log(x)-x
^2+2*x)*log(12*log(x)-12*x+24)-2*x^2+6*x-4)/(((5*x-10)*log(x)-5*x^2+20*x-20)*log(12*log(x)-12*x+24)*log(1/(4*x
-8)/log(12*log(x)-12*x+24)^2)^2+((10*x^2-20*x)*log(x)-10*x^3+40*x^2-40*x)*log(12*log(x)-12*x+24)*log(1/(4*x-8)
/log(12*log(x)-12*x+24)^2)+((5*x^3-10*x^2)*log(x)-5*x^4+20*x^3-20*x^2)*log(12*log(x)-12*x+24)),x, algorithm="m
axima")
[Out]
Timed out
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(6*x + log(12*log(x) - 12*x + 24)*(2*x + x*log(x) - x^2) - 2*x^2 + log(1/(log(12*log(x) - 12*x + 24)^2*(4
*x - 8)))*log(12*log(x) - 12*x + 24)*(4*x + log(x)*(x - 2) - x^2 - 4) - 4)/(log(12*log(x) - 12*x + 24)*(log(x)
*(10*x^2 - 5*x^3) + 20*x^2 - 20*x^3 + 5*x^4) - log(1/(log(12*log(x) - 12*x + 24)^2*(4*x - 8)))^2*log(12*log(x)
- 12*x + 24)*(20*x + log(x)*(5*x - 10) - 5*x^2 - 20) + log(1/(log(12*log(x) - 12*x + 24)^2*(4*x - 8)))*log(12
*log(x) - 12*x + 24)*(40*x + log(x)*(20*x - 10*x^2) - 40*x^2 + 10*x^3)),x)
[Out]
-int((6*x + log(12*log(x) - 12*x + 24)*(2*x + x*log(x) - x^2) - 2*x^2 + log(1/(log(12*log(x) - 12*x + 24)^2*(4
*x - 8)))*log(12*log(x) - 12*x + 24)*(4*x + log(x)*(x - 2) - x^2 - 4) - 4)/(log(12*log(x) - 12*x + 24)*(log(x)
*(10*x^2 - 5*x^3) + 20*x^2 - 20*x^3 + 5*x^4) - log(1/(log(12*log(x) - 12*x + 24)^2*(4*x - 8)))^2*log(12*log(x)
- 12*x + 24)*(20*x + log(x)*(5*x - 10) - 5*x^2 - 20) + log(1/(log(12*log(x) - 12*x + 24)^2*(4*x - 8)))*log(12
*log(x) - 12*x + 24)*(40*x + log(x)*(20*x - 10*x^2) - 40*x^2 + 10*x^3)), x)
________________________________________________________________________________________
sympy [A] time = 3.55, size = 27, normalized size = 0.87
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((x-2)*ln(x)-x**2+4*x-4)*ln(12*ln(x)-12*x+24)*ln(1/(4*x-8)/ln(12*ln(x)-12*x+24)**2)+(x*ln(x)-x**2+2
*x)*ln(12*ln(x)-12*x+24)-2*x**2+6*x-4)/(((5*x-10)*ln(x)-5*x**2+20*x-20)*ln(12*ln(x)-12*x+24)*ln(1/(4*x-8)/ln(1
2*ln(x)-12*x+24)**2)**2+((10*x**2-20*x)*ln(x)-10*x**3+40*x**2-40*x)*ln(12*ln(x)-12*x+24)*ln(1/(4*x-8)/ln(12*ln
(x)-12*x+24)**2)+((5*x**3-10*x**2)*ln(x)-5*x**4+20*x**3-20*x**2)*ln(12*ln(x)-12*x+24)),x)
[Out]
x/(5*x + 5*log(1/((4*x - 8)*log(-12*x + 12*log(x) + 24)**2)))
________________________________________________________________________________________