3.33.50 e5+x(9+24x16x2)+e5(924x+16x2)+12e4log(2)e5(924x+16x2)dx

Optimal. Leaf size=22 4ex+x3log(2)e(3+4x)

________________________________________________________________________________________

Rubi [A]  time = 0.25, antiderivative size = 23, normalized size of antiderivative = 1.05, number of steps used = 7, number of rules used = 5, integrand size = 54, number of rulesintegrand size = 0.093, Rules used = {12, 27, 6742, 2194, 683} xex+log(4096)4e(34x)

Antiderivative was successfully verified.

[In]

Int[(E^(5 + x)*(-9 + 24*x - 16*x^2) + E^5*(9 - 24*x + 16*x^2) + 12*E^4*Log[2])/(E^5*(9 - 24*x + 16*x^2)),x]

[Out]

-E^x + x + Log[4096]/(4*E*(3 - 4*x))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 683

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
 e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
 0] && IGtQ[p, 0] &&  !(EqQ[m, 3] && NeQ[p, 1])

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=e5+x(9+24x16x2)+e5(924x+16x2)+12e4log(2)924x+16x2dxe5=e5+x(9+24x16x2)+e5(924x+16x2)+12e4log(2)(3+4x)2dxe5=(e5+x+e4(9e24ex+16ex2+log(4096))(3+4x)2)dxe5=e5+xdxe5+9e24ex+16ex2+log(4096)(3+4x)2dxe=ex+(e+log(4096)(3+4x)2)dxe=ex+x+log(4096)4e(34x)

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 25, normalized size = 1.14 e1+x+ex+log(4096)1216xe

Antiderivative was successfully verified.

[In]

Integrate[(E^(5 + x)*(-9 + 24*x - 16*x^2) + E^5*(9 - 24*x + 16*x^2) + 12*E^4*Log[2])/(E^5*(9 - 24*x + 16*x^2))
,x]

[Out]

(-E^(1 + x) + E*x + Log[4096]/(12 - 16*x))/E

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 40, normalized size = 1.82 ((4x23x)e5(4x3)e(x+5)3e4log(2))e(5)4x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x^2+24*x-9)*exp(5)*exp(x)+12*exp(4)*log(2)+(16*x^2-24*x+9)*exp(5))/(16*x^2-24*x+9)/exp(5),x, a
lgorithm="fricas")

[Out]

((4*x^2 - 3*x)*e^5 - (4*x - 3)*e^(x + 5) - 3*e^4*log(2))*e^(-5)/(4*x - 3)

________________________________________________________________________________________

giac [B]  time = 0.28, size = 42, normalized size = 1.91 (4x2e53xe54xe(x+5)3e4log(2)+3e(x+5))e(5)4x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x^2+24*x-9)*exp(5)*exp(x)+12*exp(4)*log(2)+(16*x^2-24*x+9)*exp(5))/(16*x^2-24*x+9)/exp(5),x, a
lgorithm="giac")

[Out]

(4*x^2*e^5 - 3*x*e^5 - 4*x*e^(x + 5) - 3*e^4*log(2) + 3*e^(x + 5))*e^(-5)/(4*x - 3)

________________________________________________________________________________________

maple [A]  time = 0.55, size = 18, normalized size = 0.82




method result size



risch x3e1ln(2)4(x34)ex 18
norman 4x24exx+3ex3(4e4ln(2)+3e5)e544x3 41
default e5(xe53e4ln(2)4x39e5(ex16(x34)e34\expIntegralEi(1,x+34)16)+24e5(3ex64(x34)7e34\expIntegralEi(1,x+34)64)16e5(ex169ex256(x34)33e34\expIntegralEi(1,x+34)256)) 103



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-16*x^2+24*x-9)*exp(5)*exp(x)+12*exp(4)*ln(2)+(16*x^2-24*x+9)*exp(5))/(16*x^2-24*x+9)/exp(5),x,method=_R
ETURNVERBOSE)

[Out]

x-3/4*exp(-1)*ln(2)/(x-3/4)-exp(x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 14((4x94x3+6log(4x3))e5+6(34x3log(4x3))e532(2x2e53xe5)ex16x224x+9+9e234E2(x+34)4x312e4log(2)4x39e54x3+288e(x+5)64x3144x2+108x27dx)e(5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x^2+24*x-9)*exp(5)*exp(x)+12*exp(4)*log(2)+(16*x^2-24*x+9)*exp(5))/(16*x^2-24*x+9)/exp(5),x, a
lgorithm="maxima")

[Out]

1/4*((4*x - 9/(4*x - 3) + 6*log(4*x - 3))*e^5 + 6*(3/(4*x - 3) - log(4*x - 3))*e^5 - 32*(2*x^2*e^5 - 3*x*e^5)*
e^x/(16*x^2 - 24*x + 9) + 9*e^(23/4)*exp_integral_e(2, -x + 3/4)/(4*x - 3) - 12*e^4*log(2)/(4*x - 3) - 9*e^5/(
4*x - 3) + 288*integrate(e^(x + 5)/(64*x^3 - 144*x^2 + 108*x - 27), x))*e^(-5)

________________________________________________________________________________________

mupad [B]  time = 0.15, size = 24, normalized size = 1.09 xex+3e4ln(2)3e54xe5

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-5)*(12*exp(4)*log(2) + exp(5)*(16*x^2 - 24*x + 9) - exp(5)*exp(x)*(16*x^2 - 24*x + 9)))/(16*x^2 - 24
*x + 9),x)

[Out]

x - exp(x) + (3*exp(4)*log(2))/(3*exp(5) - 4*x*exp(5))

________________________________________________________________________________________

sympy [A]  time = 0.25, size = 20, normalized size = 0.91 xex3log(2)4ex3e

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x**2+24*x-9)*exp(5)*exp(x)+12*exp(4)*ln(2)+(16*x**2-24*x+9)*exp(5))/(16*x**2-24*x+9)/exp(5),x)

[Out]

x - exp(x) - 3*log(2)/(4*E*x - 3*E)

________________________________________________________________________________________