3.33.50
Optimal. Leaf size=22
________________________________________________________________________________________
Rubi [A] time = 0.25, antiderivative size = 23, normalized size of antiderivative = 1.05,
number of steps used = 7, number of rules used = 5, integrand size = 54, = 0.093, Rules used =
{12, 27, 6742, 2194, 683}
Antiderivative was successfully verified.
[In]
Int[(E^(5 + x)*(-9 + 24*x - 16*x^2) + E^5*(9 - 24*x + 16*x^2) + 12*E^4*Log[2])/(E^5*(9 - 24*x + 16*x^2)),x]
[Out]
-E^x + x + Log[4096]/(4*E*(3 - 4*x))
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 27
Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
Rule 683
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e,
0] && IGtQ[p, 0] && !(EqQ[m, 3] && NeQ[p, 1])
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 25, normalized size = 1.14
Antiderivative was successfully verified.
[In]
Integrate[(E^(5 + x)*(-9 + 24*x - 16*x^2) + E^5*(9 - 24*x + 16*x^2) + 12*E^4*Log[2])/(E^5*(9 - 24*x + 16*x^2))
,x]
[Out]
(-E^(1 + x) + E*x + Log[4096]/(12 - 16*x))/E
________________________________________________________________________________________
fricas [A] time = 0.56, size = 40, normalized size = 1.82
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-16*x^2+24*x-9)*exp(5)*exp(x)+12*exp(4)*log(2)+(16*x^2-24*x+9)*exp(5))/(16*x^2-24*x+9)/exp(5),x, a
lgorithm="fricas")
[Out]
((4*x^2 - 3*x)*e^5 - (4*x - 3)*e^(x + 5) - 3*e^4*log(2))*e^(-5)/(4*x - 3)
________________________________________________________________________________________
giac [B] time = 0.28, size = 42, normalized size = 1.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-16*x^2+24*x-9)*exp(5)*exp(x)+12*exp(4)*log(2)+(16*x^2-24*x+9)*exp(5))/(16*x^2-24*x+9)/exp(5),x, a
lgorithm="giac")
[Out]
(4*x^2*e^5 - 3*x*e^5 - 4*x*e^(x + 5) - 3*e^4*log(2) + 3*e^(x + 5))*e^(-5)/(4*x - 3)
________________________________________________________________________________________
maple [A] time = 0.55, size = 18, normalized size = 0.82
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-16*x^2+24*x-9)*exp(5)*exp(x)+12*exp(4)*ln(2)+(16*x^2-24*x+9)*exp(5))/(16*x^2-24*x+9)/exp(5),x,method=_R
ETURNVERBOSE)
[Out]
x-3/4*exp(-1)*ln(2)/(x-3/4)-exp(x)
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-16*x^2+24*x-9)*exp(5)*exp(x)+12*exp(4)*log(2)+(16*x^2-24*x+9)*exp(5))/(16*x^2-24*x+9)/exp(5),x, a
lgorithm="maxima")
[Out]
1/4*((4*x - 9/(4*x - 3) + 6*log(4*x - 3))*e^5 + 6*(3/(4*x - 3) - log(4*x - 3))*e^5 - 32*(2*x^2*e^5 - 3*x*e^5)*
e^x/(16*x^2 - 24*x + 9) + 9*e^(23/4)*exp_integral_e(2, -x + 3/4)/(4*x - 3) - 12*e^4*log(2)/(4*x - 3) - 9*e^5/(
4*x - 3) + 288*integrate(e^(x + 5)/(64*x^3 - 144*x^2 + 108*x - 27), x))*e^(-5)
________________________________________________________________________________________
mupad [B] time = 0.15, size = 24, normalized size = 1.09
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(-5)*(12*exp(4)*log(2) + exp(5)*(16*x^2 - 24*x + 9) - exp(5)*exp(x)*(16*x^2 - 24*x + 9)))/(16*x^2 - 24
*x + 9),x)
[Out]
x - exp(x) + (3*exp(4)*log(2))/(3*exp(5) - 4*x*exp(5))
________________________________________________________________________________________
sympy [A] time = 0.25, size = 20, normalized size = 0.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-16*x**2+24*x-9)*exp(5)*exp(x)+12*exp(4)*ln(2)+(16*x**2-24*x+9)*exp(5))/(16*x**2-24*x+9)/exp(5),x)
[Out]
x - exp(x) - 3*log(2)/(4*E*x - 3*E)
________________________________________________________________________________________