3.33.55
Optimal. Leaf size=35
________________________________________________________________________________________
Rubi [B] time = 0.42, antiderivative size = 104, normalized size of antiderivative = 2.97,
number of steps used = 7, number of rules used = 4, integrand size = 150, = 0.027, Rules used
= {2074, 618, 204, 638}
Antiderivative was successfully verified.
[In]
Int[(-1968 + 1760*x - 560*x^2 + 1280*x^4 - 512*x^5 + (-656 + 1024*x - 1136*x^2 + 1024*x^3 - 256*x^4)*Log[Log[4
]])/(75645*x^2 - 67650*x^3 + 34805*x^4 + 10880*x^5 - 7520*x^6 + 2560*x^7 + 1280*x^8 + (50430*x^2 - 61910*x^3 +
43840*x^4 - 7360*x^5 - 2560*x^6 + 2560*x^7)*Log[Log[4]] + (8405*x^2 - 13120*x^3 + 11680*x^4 - 5120*x^5 + 1280
*x^6)*Log[Log[4]]^2),x]
[Out]
16/(205*x*(3 + Log[Log[4]])) - (16*(4 + Log[Log[4]])^2)/(5*(3 + Log[Log[4]])*(3 + x + Log[Log[4]])*(281 + 128*
Log[Log[4]] + 16*Log[Log[4]]^2)) - (80*(119 + 32*Log[Log[4]] - 16*x*(5 + Log[Log[4]])))/(41*(41 - 32*x + 16*x^
2)*(281 + 128*Log[Log[4]] + 16*Log[Log[4]]^2))
Rule 204
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])
Rule 618
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]
Rule 638
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b*d - 2*a*e + (2*c*d -
b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[((2*p + 3)*(2*c*d - b*e))/((p + 1)*(b^2
- 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2]
Rule 2074
Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /; !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 32, normalized size = 0.91
Antiderivative was successfully verified.
[In]
Integrate[(-1968 + 1760*x - 560*x^2 + 1280*x^4 - 512*x^5 + (-656 + 1024*x - 1136*x^2 + 1024*x^3 - 256*x^4)*Log
[Log[4]])/(75645*x^2 - 67650*x^3 + 34805*x^4 + 10880*x^5 - 7520*x^6 + 2560*x^7 + 1280*x^8 + (50430*x^2 - 61910
*x^3 + 43840*x^4 - 7360*x^5 - 2560*x^6 + 2560*x^7)*Log[Log[4]] + (8405*x^2 - 13120*x^3 + 11680*x^4 - 5120*x^5
+ 1280*x^6)*Log[Log[4]]^2),x]
[Out]
(16*(-1 + x)^2)/(5*x*(41 - 32*x + 16*x^2)*(3 + x + Log[Log[4]]))
________________________________________________________________________________________
fricas [A] time = 0.61, size = 51, normalized size = 1.46
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-256*x^4+1024*x^3-1136*x^2+1024*x-656)*log(2*log(2))-512*x^5+1280*x^4-560*x^2+1760*x-1968)/((1280*
x^6-5120*x^5+11680*x^4-13120*x^3+8405*x^2)*log(2*log(2))^2+(2560*x^7-2560*x^6-7360*x^5+43840*x^4-61910*x^3+504
30*x^2)*log(2*log(2))+1280*x^8+2560*x^7-7520*x^6+10880*x^5+34805*x^4-67650*x^3+75645*x^2),x, algorithm="fricas
")
[Out]
16/5*(x^2 - 2*x + 1)/(16*x^4 + 16*x^3 - 55*x^2 + (16*x^3 - 32*x^2 + 41*x)*log(2*log(2)) + 123*x)
________________________________________________________________________________________
giac [A] time = 0.28, size = 59, normalized size = 1.69
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-256*x^4+1024*x^3-1136*x^2+1024*x-656)*log(2*log(2))-512*x^5+1280*x^4-560*x^2+1760*x-1968)/((1280*
x^6-5120*x^5+11680*x^4-13120*x^3+8405*x^2)*log(2*log(2))^2+(2560*x^7-2560*x^6-7360*x^5+43840*x^4-61910*x^3+504
30*x^2)*log(2*log(2))+1280*x^8+2560*x^7-7520*x^6+10880*x^5+34805*x^4-67650*x^3+75645*x^2),x, algorithm="giac")
[Out]
16/5*(x^2 - 2*x + 1)/(16*x^4 + 16*x^3*log(2*log(2)) + 16*x^3 - 32*x^2*log(2*log(2)) - 55*x^2 + 41*x*log(2*log(
2)) + 123*x)
________________________________________________________________________________________
maple [A] time = 0.43, size = 37, normalized size = 1.06
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
gosper |
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-256*x^4+1024*x^3-1136*x^2+1024*x-656)*ln(2*ln(2))-512*x^5+1280*x^4-560*x^2+1760*x-1968)/((1280*x^6-5120
*x^5+11680*x^4-13120*x^3+8405*x^2)*ln(2*ln(2))^2+(2560*x^7-2560*x^6-7360*x^5+43840*x^4-61910*x^3+50430*x^2)*ln
(2*ln(2))+1280*x^8+2560*x^7-7520*x^6+10880*x^5+34805*x^4-67650*x^3+75645*x^2),x,method=_RETURNVERBOSE)
[Out]
(16/5-32/5*x+16/5*x^2)/x/(16*x^2-32*x+41)/(3+x+ln(2*ln(2)))
________________________________________________________________________________________
maxima [A] time = 0.55, size = 54, normalized size = 1.54
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-256*x^4+1024*x^3-1136*x^2+1024*x-656)*log(2*log(2))-512*x^5+1280*x^4-560*x^2+1760*x-1968)/((1280*
x^6-5120*x^5+11680*x^4-13120*x^3+8405*x^2)*log(2*log(2))^2+(2560*x^7-2560*x^6-7360*x^5+43840*x^4-61910*x^3+504
30*x^2)*log(2*log(2))+1280*x^8+2560*x^7-7520*x^6+10880*x^5+34805*x^4-67650*x^3+75645*x^2),x, algorithm="maxima
")
[Out]
16/5*(x^2 - 2*x + 1)/(16*x^4 + 16*x^3*(log(2*log(2)) + 1) - x^2*(32*log(2*log(2)) + 55) + 41*x*(log(2*log(2))
+ 3))
________________________________________________________________________________________
mupad [B] time = 6.34, size = 205, normalized size = 5.86
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(2*log(2))*(1136*x^2 - 1024*x - 1024*x^3 + 256*x^4 + 656) - 1760*x + 560*x^2 - 1280*x^4 + 512*x^5 + 1
968)/(log(2*log(2))*(50430*x^2 - 61910*x^3 + 43840*x^4 - 7360*x^5 - 2560*x^6 + 2560*x^7) + log(2*log(2))^2*(84
05*x^2 - 13120*x^3 + 11680*x^4 - 5120*x^5 + 1280*x^6) + 75645*x^2 - 67650*x^3 + 34805*x^4 + 10880*x^5 - 7520*x
^6 + 2560*x^7 + 1280*x^8),x)
[Out]
((x^2*(log(log(4)^1121190) + 738961*log(log(4))^2 + 261056*log(log(4))^3 + 52256*log(log(4))^4 + 5632*log(log(
4))^5 + 256*log(log(4))^6 + 710649))/(5*(log(log(4)) + 3)^2*(log(log(4)^71936) + 25376*log(log(4))^2 + 4096*lo
g(log(4))^3 + 256*log(log(4))^4 + 78961)) - (x*(log(log(4)^2242380) + 1477922*log(log(4))^2 + 522112*log(log(4
))^3 + 104512*log(log(4))^4 + 11264*log(log(4))^5 + 512*log(log(4))^6 + 1421298))/(5*(log(log(4)) + 3)^2*(log(
log(4)^71936) + 25376*log(log(4))^2 + 4096*log(log(4))^3 + 256*log(log(4))^4 + 78961)) + 1/5)/(x^3*(log(log(4)
) + 1) + x*(log(log(4)^(41/16)) + 123/16) - x^2*(log(log(4)^2) + 55/16) + x^4)
________________________________________________________________________________________
sympy [B] time = 76.22, size = 66, normalized size = 1.89
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-256*x**4+1024*x**3-1136*x**2+1024*x-656)*ln(2*ln(2))-512*x**5+1280*x**4-560*x**2+1760*x-1968)/((1
280*x**6-5120*x**5+11680*x**4-13120*x**3+8405*x**2)*ln(2*ln(2))**2+(2560*x**7-2560*x**6-7360*x**5+43840*x**4-6
1910*x**3+50430*x**2)*ln(2*ln(2))+1280*x**8+2560*x**7-7520*x**6+10880*x**5+34805*x**4-67650*x**3+75645*x**2),x
)
[Out]
-(-16*x**2 + 32*x - 16)/(80*x**4 + x**3*(80*log(log(2)) + 80*log(2) + 80) + x**2*(-275 - 160*log(2) - 160*log(
log(2))) + x*(205*log(log(2)) + 205*log(2) + 615))
________________________________________________________________________________________