3.33.56
Optimal. Leaf size=34
________________________________________________________________________________________
Rubi [A] time = 0.56, antiderivative size = 26, normalized size of antiderivative = 0.76,
number of steps used = 4, number of rules used = 3, integrand size = 121, = 0.025, Rules used
= {6, 6688, 6686}
Antiderivative was successfully verified.
[In]
Int[(E^(x/(4 + E^2))*Log[2] + (-4 - E^2)*Log[2] + (E^(x/(4 + E^2))*(8 + 2*E^2) - 8*x - 2*E^2*x)*Log[E^(x/(4 +
E^2)) - x]^2)/((E^(x/(4 + E^2))*(4 + E^2) - 4*x - E^2*x)*Log[E^(x/(4 + E^2)) - x]^2),x]
[Out]
2*x - Log[2]/Log[E^(x/(4 + E^2)) - x]
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 26, normalized size = 0.76
Antiderivative was successfully verified.
[In]
Integrate[(E^(x/(4 + E^2))*Log[2] + (-4 - E^2)*Log[2] + (E^(x/(4 + E^2))*(8 + 2*E^2) - 8*x - 2*E^2*x)*Log[E^(x
/(4 + E^2)) - x]^2)/((E^(x/(4 + E^2))*(4 + E^2) - 4*x - E^2*x)*Log[E^(x/(4 + E^2)) - x]^2),x]
[Out]
2*x - Log[2]/Log[E^(x/(4 + E^2)) - x]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 39, normalized size = 1.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*exp(2)+8)*exp(x/(4+exp(2)))-2*exp(2)*x-8*x)*log(exp(x/(4+exp(2)))-x)^2+log(2)*exp(x/(4+exp(2)))
+(-exp(2)-4)*log(2))/((4+exp(2))*exp(x/(4+exp(2)))-exp(2)*x-4*x)/log(exp(x/(4+exp(2)))-x)^2,x, algorithm="fric
as")
[Out]
(2*x*log(-x + e^(x/(e^2 + 4))) - log(2))/log(-x + e^(x/(e^2 + 4)))
________________________________________________________________________________________
giac [A] time = 1.07, size = 39, normalized size = 1.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*exp(2)+8)*exp(x/(4+exp(2)))-2*exp(2)*x-8*x)*log(exp(x/(4+exp(2)))-x)^2+log(2)*exp(x/(4+exp(2)))
+(-exp(2)-4)*log(2))/((4+exp(2))*exp(x/(4+exp(2)))-exp(2)*x-4*x)/log(exp(x/(4+exp(2)))-x)^2,x, algorithm="giac
")
[Out]
(2*x*log(-x + e^(x/(e^2 + 4))) - log(2))/log(-x + e^(x/(e^2 + 4)))
________________________________________________________________________________________
maple [A] time = 0.11, size = 25, normalized size = 0.74
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((2*exp(2)+8)*exp(x/(4+exp(2)))-2*exp(2)*x-8*x)*ln(exp(x/(4+exp(2)))-x)^2+ln(2)*exp(x/(4+exp(2)))+(-exp(2
)-4)*ln(2))/((4+exp(2))*exp(x/(4+exp(2)))-exp(2)*x-4*x)/ln(exp(x/(4+exp(2)))-x)^2,x,method=_RETURNVERBOSE)
[Out]
2*x-ln(2)/ln(exp(x/(4+exp(2)))-x)
________________________________________________________________________________________
maxima [A] time = 0.81, size = 39, normalized size = 1.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*exp(2)+8)*exp(x/(4+exp(2)))-2*exp(2)*x-8*x)*log(exp(x/(4+exp(2)))-x)^2+log(2)*exp(x/(4+exp(2)))
+(-exp(2)-4)*log(2))/((4+exp(2))*exp(x/(4+exp(2)))-exp(2)*x-4*x)/log(exp(x/(4+exp(2)))-x)^2,x, algorithm="maxi
ma")
[Out]
(2*x*log(-x + e^(x/(e^2 + 4))) - log(2))/log(-x + e^(x/(e^2 + 4)))
________________________________________________________________________________________
mupad [B] time = 2.24, size = 24, normalized size = 0.71
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(exp(x/(exp(2) + 4)) - x)^2*(8*x + 2*x*exp(2) - exp(x/(exp(2) + 4))*(2*exp(2) + 8)) - exp(x/(exp(2) +
4))*log(2) + log(2)*(exp(2) + 4))/(log(exp(x/(exp(2) + 4)) - x)^2*(4*x + x*exp(2) - exp(x/(exp(2) + 4))*(exp(2
) + 4))),x)
[Out]
2*x - log(2)/log(exp(x/(exp(2) + 4)) - x)
________________________________________________________________________________________
sympy [A] time = 0.28, size = 17, normalized size = 0.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((2*exp(2)+8)*exp(x/(4+exp(2)))-2*exp(2)*x-8*x)*ln(exp(x/(4+exp(2)))-x)**2+ln(2)*exp(x/(4+exp(2)))+
(-exp(2)-4)*ln(2))/((4+exp(2))*exp(x/(4+exp(2)))-exp(2)*x-4*x)/ln(exp(x/(4+exp(2)))-x)**2,x)
[Out]
2*x - log(2)/log(-x + exp(x/(4 + exp(2))))
________________________________________________________________________________________