3.33.58 (52x)log(x)+(5+x)log(5x+x2)+(5xx2+(5x+x2)log(x))log2(5x+x2)+(5x+x2+(5x+x2)log(x))log(x2)log2(5x+x2)(5x+x2)log2(5x+x2)dx

Optimal. Leaf size=21 log(x)(x+1log((5+x)x)+xlog(x2))

________________________________________________________________________________________

Rubi [F]  time = 1.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} (52x)log(x)+(5+x)log(5x+x2)+(5xx2+(5x+x2)log(x))log2(5x+x2)+(5x+x2+(5x+x2)log(x))log(x2)log2(5x+x2)(5x+x2)log2(5x+x2)dx

Verification is not applicable to the result.

[In]

Int[((5 - 2*x)*Log[x] + (-5 + x)*Log[-5*x + x^2] + (5*x - x^2 + (-5*x + x^2)*Log[x])*Log[-5*x + x^2]^2 + (-5*x
 + x^2 + (-5*x + x^2)*Log[x])*Log[x^2]*Log[-5*x + x^2]^2)/((-5*x + x^2)*Log[-5*x + x^2]^2),x]

[Out]

-(x*Log[x]) + x*Log[x]*Log[x^2] - Defer[Int][Log[x]/((-5 + x)*Log[(-5 + x)*x]^2), x] - Defer[Int][Log[x]/(x*Lo
g[(-5 + x)*x]^2), x] + Defer[Int][1/(x*Log[(-5 + x)*x]), x]

Rubi steps

integral=(52x)log(x)+(5+x)log(5x+x2)+(5xx2+(5x+x2)log(x))log2(5x+x2)+(5x+x2+(5x+x2)log(x))log(x2)log2(5x+x2)(5+x)xlog2(5x+x2)dx=((5+x)log((5+x)x)(1+xlog((5+x)x)(1+log(x2))))log(x)(52x+(5+x)xlog2((5+x)x)(1+log(x2)))(5x)xlog2((5+x)x)dx=(5log(x)2xlog(x)5log((5+x)x)+xlog((5+x)x)+5xlog2((5+x)x)x2log2((5+x)x)5xlog(x)log2((5+x)x)+x2log(x)log2((5+x)x)(5+x)xlog2((5+x)x)+(1+log(x))log(x2))dx=5log(x)2xlog(x)5log((5+x)x)+xlog((5+x)x)+5xlog2((5+x)x)x2log2((5+x)x)5xlog(x)log2((5+x)x)+x2log(x)log2((5+x)x)(5+x)xlog2((5+x)x)dx+(1+log(x))log(x2)dx=xlog(x)log(x2)2log(x)dx+(5+x)log((5+x)x)(1+xlog((5+x)x))log(x)(52x+(5+x)xlog2((5+x)x))(5x)xlog2((5+x)x)dx=2x2xlog(x)+xlog(x)log(x2)+(1+log(x)(5+2x)log(x)(5+x)xlog2((5+x)x)+1xlog((5+x)x))dx=x2xlog(x)+xlog(x)log(x2)+log(x)dx(5+2x)log(x)(5+x)xlog2((5+x)x)dx+1xlog((5+x)x)dx=xlog(x)+xlog(x)log(x2)(log(x)(5+x)log2((5+x)x)+log(x)xlog2((5+x)x))dx+1xlog((5+x)x)dx=xlog(x)+xlog(x)log(x2)log(x)(5+x)log2((5+x)x)dxlog(x)xlog2((5+x)x)dx+1xlog((5+x)x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 20, normalized size = 0.95 log(x)(1log((5+x)x)+x(1+log(x2)))

Antiderivative was successfully verified.

[In]

Integrate[((5 - 2*x)*Log[x] + (-5 + x)*Log[-5*x + x^2] + (5*x - x^2 + (-5*x + x^2)*Log[x])*Log[-5*x + x^2]^2 +
 (-5*x + x^2 + (-5*x + x^2)*Log[x])*Log[x^2]*Log[-5*x + x^2]^2)/((-5*x + x^2)*Log[-5*x + x^2]^2),x]

[Out]

Log[x]*(Log[(-5 + x)*x]^(-1) + x*(-1 + Log[x^2]))

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 36, normalized size = 1.71 (2xlog(x)2xlog(x))log(x25x)+log(x)log(x25x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x^2-5*x)*log(x)+x^2-5*x)*log(x^2-5*x)^2*log(x^2)+((x^2-5*x)*log(x)-x^2+5*x)*log(x^2-5*x)^2+(x-5)*
log(x^2-5*x)+(-2*x+5)*log(x))/(x^2-5*x)/log(x^2-5*x)^2,x, algorithm="fricas")

[Out]

((2*x*log(x)^2 - x*log(x))*log(x^2 - 5*x) + log(x))/log(x^2 - 5*x)

________________________________________________________________________________________

giac [A]  time = 0.35, size = 25, normalized size = 1.19 2xlog(x)2xlog(x)+log(x)log(x5)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x^2-5*x)*log(x)+x^2-5*x)*log(x^2-5*x)^2*log(x^2)+((x^2-5*x)*log(x)-x^2+5*x)*log(x^2-5*x)^2+(x-5)*
log(x^2-5*x)+(-2*x+5)*log(x))/(x^2-5*x)/log(x^2-5*x)^2,x, algorithm="giac")

[Out]

2*x*log(x)^2 - x*log(x) + log(x)/(log(x - 5) + log(x))

________________________________________________________________________________________

maple [C]  time = 0.72, size = 167, normalized size = 7.95




method result size



risch 2xln(x)2iπxcsgn(ix)2csgn(ix2)ln(x)2+iπxcsgn(ix)csgn(ix2)2ln(x)iπxcsgn(ix2)3ln(x)2xln(x)+2ln(x)2ln(x)+2ln(x5)iπcsgn(ix)csgn(i(x5))csgn(ix(x5))+iπcsgn(ix)csgn(ix(x5))2+iπcsgn(i(x5))csgn(ix(x5))2iπcsgn(ix(x5))3 167



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((x^2-5*x)*ln(x)+x^2-5*x)*ln(x^2-5*x)^2*ln(x^2)+((x^2-5*x)*ln(x)-x^2+5*x)*ln(x^2-5*x)^2+(x-5)*ln(x^2-5*x)
+(-2*x+5)*ln(x))/(x^2-5*x)/ln(x^2-5*x)^2,x,method=_RETURNVERBOSE)

[Out]

2*x*ln(x)^2-1/2*I*Pi*x*csgn(I*x)^2*csgn(I*x^2)*ln(x)+I*Pi*x*csgn(I*x)*csgn(I*x^2)^2*ln(x)-1/2*I*Pi*x*csgn(I*x^
2)^3*ln(x)-x*ln(x)+2*ln(x)/(2*ln(x)+2*ln(x-5)-I*Pi*csgn(I*x)*csgn(I*(x-5))*csgn(I*x*(x-5))+I*Pi*csgn(I*x)*csgn
(I*x*(x-5))^2+I*Pi*csgn(I*(x-5))*csgn(I*x*(x-5))^2-I*Pi*csgn(I*x*(x-5))^3)

________________________________________________________________________________________

maxima [B]  time = 0.47, size = 45, normalized size = 2.14 2xlog(x)3xlog(x)2+(2xlog(x)2xlog(x))log(x5)+log(x)log(x5)+log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x^2-5*x)*log(x)+x^2-5*x)*log(x^2-5*x)^2*log(x^2)+((x^2-5*x)*log(x)-x^2+5*x)*log(x^2-5*x)^2+(x-5)*
log(x^2-5*x)+(-2*x+5)*log(x))/(x^2-5*x)/log(x^2-5*x)^2,x, algorithm="maxima")

[Out]

(2*x*log(x)^3 - x*log(x)^2 + (2*x*log(x)^2 - x*log(x))*log(x - 5) + log(x))/(log(x - 5) + log(x))

________________________________________________________________________________________

mupad [B]  time = 2.18, size = 55, normalized size = 2.62 ln(x)ln(x25x)54(x52)x2x5+52x5xln(x)+xln(x2)ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x)*(2*x - 5) - log(x^2 - 5*x)*(x - 5) + log(x^2 - 5*x)^2*(log(x)*(5*x - x^2) - 5*x + x^2) + log(x^2)*
log(x^2 - 5*x)^2*(5*x + log(x)*(5*x - x^2) - x^2))/(log(x^2 - 5*x)^2*(5*x - x^2)),x)

[Out]

log(x)/log(x^2 - 5*x) - 5/(4*(x - 5/2)) - x/(2*x - 5) + 5/(2*x - 5) - x*log(x) + x*log(x^2)*log(x)

________________________________________________________________________________________

sympy [A]  time = 0.33, size = 24, normalized size = 1.14 2xlog(x)2xlog(x)+log(x)log(x25x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((x**2-5*x)*ln(x)+x**2-5*x)*ln(x**2-5*x)**2*ln(x**2)+((x**2-5*x)*ln(x)-x**2+5*x)*ln(x**2-5*x)**2+(x
-5)*ln(x**2-5*x)+(-2*x+5)*ln(x))/(x**2-5*x)/ln(x**2-5*x)**2,x)

[Out]

2*x*log(x)**2 - x*log(x) + log(x)/log(x**2 - 5*x)

________________________________________________________________________________________