Optimal. Leaf size=21 \[ \log (x) \left (-x+\frac {1}{\log ((-5+x) x)}+x \log \left (x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.92, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(5-2 x) \log (x)+(-5+x) \log \left (-5 x+x^2\right )+\left (5 x-x^2+\left (-5 x+x^2\right ) \log (x)\right ) \log ^2\left (-5 x+x^2\right )+\left (-5 x+x^2+\left (-5 x+x^2\right ) \log (x)\right ) \log \left (x^2\right ) \log ^2\left (-5 x+x^2\right )}{\left (-5 x+x^2\right ) \log ^2\left (-5 x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {(5-2 x) \log (x)+(-5+x) \log \left (-5 x+x^2\right )+\left (5 x-x^2+\left (-5 x+x^2\right ) \log (x)\right ) \log ^2\left (-5 x+x^2\right )+\left (-5 x+x^2+\left (-5 x+x^2\right ) \log (x)\right ) \log \left (x^2\right ) \log ^2\left (-5 x+x^2\right )}{(-5+x) x \log ^2\left (-5 x+x^2\right )} \, dx\\ &=\int \frac {-\left ((-5+x) \log ((-5+x) x) \left (1+x \log ((-5+x) x) \left (-1+\log \left (x^2\right )\right )\right )\right )-\log (x) \left (5-2 x+(-5+x) x \log ^2((-5+x) x) \left (1+\log \left (x^2\right )\right )\right )}{(5-x) x \log ^2((-5+x) x)} \, dx\\ &=\int \left (\frac {5 \log (x)-2 x \log (x)-5 \log ((-5+x) x)+x \log ((-5+x) x)+5 x \log ^2((-5+x) x)-x^2 \log ^2((-5+x) x)-5 x \log (x) \log ^2((-5+x) x)+x^2 \log (x) \log ^2((-5+x) x)}{(-5+x) x \log ^2((-5+x) x)}+(1+\log (x)) \log \left (x^2\right )\right ) \, dx\\ &=\int \frac {5 \log (x)-2 x \log (x)-5 \log ((-5+x) x)+x \log ((-5+x) x)+5 x \log ^2((-5+x) x)-x^2 \log ^2((-5+x) x)-5 x \log (x) \log ^2((-5+x) x)+x^2 \log (x) \log ^2((-5+x) x)}{(-5+x) x \log ^2((-5+x) x)} \, dx+\int (1+\log (x)) \log \left (x^2\right ) \, dx\\ &=x \log (x) \log \left (x^2\right )-2 \int \log (x) \, dx+\int \frac {(-5+x) \log ((-5+x) x) (-1+x \log ((-5+x) x))-\log (x) \left (5-2 x+(-5+x) x \log ^2((-5+x) x)\right )}{(5-x) x \log ^2((-5+x) x)} \, dx\\ &=2 x-2 x \log (x)+x \log (x) \log \left (x^2\right )+\int \left (-1+\log (x)-\frac {(-5+2 x) \log (x)}{(-5+x) x \log ^2((-5+x) x)}+\frac {1}{x \log ((-5+x) x)}\right ) \, dx\\ &=x-2 x \log (x)+x \log (x) \log \left (x^2\right )+\int \log (x) \, dx-\int \frac {(-5+2 x) \log (x)}{(-5+x) x \log ^2((-5+x) x)} \, dx+\int \frac {1}{x \log ((-5+x) x)} \, dx\\ &=-x \log (x)+x \log (x) \log \left (x^2\right )-\int \left (\frac {\log (x)}{(-5+x) \log ^2((-5+x) x)}+\frac {\log (x)}{x \log ^2((-5+x) x)}\right ) \, dx+\int \frac {1}{x \log ((-5+x) x)} \, dx\\ &=-x \log (x)+x \log (x) \log \left (x^2\right )-\int \frac {\log (x)}{(-5+x) \log ^2((-5+x) x)} \, dx-\int \frac {\log (x)}{x \log ^2((-5+x) x)} \, dx+\int \frac {1}{x \log ((-5+x) x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 20, normalized size = 0.95 \begin {gather*} \log (x) \left (\frac {1}{\log ((-5+x) x)}+x \left (-1+\log \left (x^2\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 36, normalized size = 1.71 \begin {gather*} \frac {{\left (2 \, x \log \relax (x)^{2} - x \log \relax (x)\right )} \log \left (x^{2} - 5 \, x\right ) + \log \relax (x)}{\log \left (x^{2} - 5 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.35, size = 25, normalized size = 1.19 \begin {gather*} 2 \, x \log \relax (x)^{2} - x \log \relax (x) + \frac {\log \relax (x)}{\log \left (x - 5\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.72, size = 167, normalized size = 7.95
method | result | size |
risch | \(2 x \ln \relax (x )^{2}-\frac {i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) \ln \relax (x )}{2}+i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} \ln \relax (x )-\frac {i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3} \ln \relax (x )}{2}-x \ln \relax (x )+\frac {2 \ln \relax (x )}{2 \ln \relax (x )+2 \ln \left (x -5\right )-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -5\right )\right ) \mathrm {csgn}\left (i x \left (x -5\right )\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x -5\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (x -5\right )\right ) \mathrm {csgn}\left (i x \left (x -5\right )\right )^{2}-i \pi \mathrm {csgn}\left (i x \left (x -5\right )\right )^{3}}\) | \(167\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 45, normalized size = 2.14 \begin {gather*} \frac {2 \, x \log \relax (x)^{3} - x \log \relax (x)^{2} + {\left (2 \, x \log \relax (x)^{2} - x \log \relax (x)\right )} \log \left (x - 5\right ) + \log \relax (x)}{\log \left (x - 5\right ) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.18, size = 55, normalized size = 2.62 \begin {gather*} \frac {\ln \relax (x)}{\ln \left (x^2-5\,x\right )}-\frac {5}{4\,\left (x-\frac {5}{2}\right )}-\frac {x}{2\,x-5}+\frac {5}{2\,x-5}-x\,\ln \relax (x)+x\,\ln \left (x^2\right )\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 24, normalized size = 1.14 \begin {gather*} 2 x \log {\relax (x )}^{2} - x \log {\relax (x )} + \frac {\log {\relax (x )}}{\log {\left (x^{2} - 5 x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________