Optimal. Leaf size=31 \[ x+\frac {3 (16+x)^2}{x \log (3) \left (-2 x+(3-x+\log (x))^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.95, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-11520+13248 x-1335 x^2-186 x^3-3 x^4+\left (81 x^2-144 x^3+82 x^4-16 x^5+x^6\right ) \log (3)+\left (-6144+2880 x+204 x^2+\left (108 x^2-132 x^3+44 x^4-4 x^5\right ) \log (3)\right ) \log (x)+\left (-768+3 x^2+\left (54 x^2-40 x^3+6 x^4\right ) \log (3)\right ) \log ^2(x)+\left (12 x^2-4 x^3\right ) \log (3) \log ^3(x)+x^2 \log (3) \log ^4(x)}{\left (81 x^2-144 x^3+82 x^4-16 x^5+x^6\right ) \log (3)+\left (108 x^2-132 x^3+44 x^4-4 x^5\right ) \log (3) \log (x)+\left (54 x^2-40 x^3+6 x^4\right ) \log (3) \log ^2(x)+\left (12 x^2-4 x^3\right ) \log (3) \log ^3(x)+x^2 \log (3) \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-11520+13248 x-16 x^5 \log (3)+x^6 \log (3)-6 x^3 (31+24 \log (3))+3 x^2 (-445+27 \log (3))+x^4 (-3+82 \log (3))-4 \left (1536-720 x+33 x^3 \log (3)-11 x^4 \log (3)+x^5 \log (3)-3 x^2 (17+9 \log (3))\right ) \log (x)+\left (-768-40 x^3 \log (3)+6 x^4 \log (3)+x^2 (3+54 \log (3))\right ) \log ^2(x)-4 (-3+x) x^2 \log (3) \log ^3(x)+x^2 \log (3) \log ^4(x)}{x^2 \log (3) \left (9-8 x+x^2-2 (-3+x) \log (x)+\log ^2(x)\right )^2} \, dx\\ &=\frac {\int \frac {-11520+13248 x-16 x^5 \log (3)+x^6 \log (3)-6 x^3 (31+24 \log (3))+3 x^2 (-445+27 \log (3))+x^4 (-3+82 \log (3))-4 \left (1536-720 x+33 x^3 \log (3)-11 x^4 \log (3)+x^5 \log (3)-3 x^2 (17+9 \log (3))\right ) \log (x)+\left (-768-40 x^3 \log (3)+6 x^4 \log (3)+x^2 (3+54 \log (3))\right ) \log ^2(x)-4 (-3+x) x^2 \log (3) \log ^3(x)+x^2 \log (3) \log ^4(x)}{x^2 \left (9-8 x+x^2-2 (-3+x) \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}\\ &=\frac {\int \left (\log (3)-\frac {6 (16+x)^2 \left (3-5 x+x^2+\log (x)-x \log (x)\right )}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}+\frac {3 \left (-256+x^2\right )}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )}\right ) \, dx}{\log (3)}\\ &=x+\frac {3 \int \frac {-256+x^2}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )} \, dx}{\log (3)}-\frac {6 \int \frac {(16+x)^2 \left (3-5 x+x^2+\log (x)-x \log (x)\right )}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}\\ &=x+\frac {3 \int \left (\frac {1}{9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)}-\frac {256}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )}\right ) \, dx}{\log (3)}-\frac {6 \int \left (\frac {3-5 x+x^2+\log (x)-x \log (x)}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}+\frac {256 \left (3-5 x+x^2+\log (x)-x \log (x)\right )}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}+\frac {32 \left (3-5 x+x^2+\log (x)-x \log (x)\right )}{x \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}\right ) \, dx}{\log (3)}\\ &=x+\frac {3 \int \frac {1}{9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)} \, dx}{\log (3)}-\frac {6 \int \frac {3-5 x+x^2+\log (x)-x \log (x)}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}-\frac {192 \int \frac {3-5 x+x^2+\log (x)-x \log (x)}{x \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}-\frac {768 \int \frac {1}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )} \, dx}{\log (3)}-\frac {1536 \int \frac {3-5 x+x^2+\log (x)-x \log (x)}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}\\ &=x+\frac {96}{\log (3) \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )}+\frac {3 \int \frac {1}{9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)} \, dx}{\log (3)}-\frac {6 \int \left (\frac {3}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}-\frac {5 x}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}+\frac {x^2}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}+\frac {\log (x)}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}-\frac {x \log (x)}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}\right ) \, dx}{\log (3)}-\frac {768 \int \frac {1}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )} \, dx}{\log (3)}-\frac {1536 \int \left (\frac {1}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}+\frac {3}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}-\frac {5}{x \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}+\frac {\log (x)}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}-\frac {\log (x)}{x \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2}\right ) \, dx}{\log (3)}\\ &=x+\frac {96}{\log (3) \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )}+\frac {3 \int \frac {1}{9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)} \, dx}{\log (3)}-\frac {6 \int \frac {x^2}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}-\frac {6 \int \frac {\log (x)}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}+\frac {6 \int \frac {x \log (x)}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}-\frac {18 \int \frac {1}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}+\frac {30 \int \frac {x}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}-\frac {768 \int \frac {1}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )} \, dx}{\log (3)}-\frac {1536 \int \frac {1}{\left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}-\frac {1536 \int \frac {\log (x)}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}+\frac {1536 \int \frac {\log (x)}{x \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}-\frac {4608 \int \frac {1}{x^2 \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}+\frac {7680 \int \frac {1}{x \left (9-8 x+x^2+6 \log (x)-2 x \log (x)+\log ^2(x)\right )^2} \, dx}{\log (3)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 41, normalized size = 1.32 \begin {gather*} \frac {x \log (3)+\frac {3 (16+x)^2}{x \left (9-8 x+x^2-2 (-3+x) \log (x)+\log ^2(x)\right )}}{\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 92, normalized size = 2.97 \begin {gather*} \frac {x^{2} \log \relax (3) \log \relax (x)^{2} - 2 \, {\left (x^{3} - 3 \, x^{2}\right )} \log \relax (3) \log \relax (x) + 3 \, x^{2} + {\left (x^{4} - 8 \, x^{3} + 9 \, x^{2}\right )} \log \relax (3) + 96 \, x + 768}{x \log \relax (3) \log \relax (x)^{2} - 2 \, {\left (x^{2} - 3 \, x\right )} \log \relax (3) \log \relax (x) + {\left (x^{3} - 8 \, x^{2} + 9 \, x\right )} \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.52, size = 57, normalized size = 1.84 \begin {gather*} x + \frac {3 \, {\left (x^{2} + 32 \, x + 256\right )}}{x^{3} \log \relax (3) - 2 \, x^{2} \log \relax (3) \log \relax (x) + x \log \relax (3) \log \relax (x)^{2} - 8 \, x^{2} \log \relax (3) + 6 \, x \log \relax (3) \log \relax (x) + 9 \, x \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 43, normalized size = 1.39
method | result | size |
risch | \(x +\frac {3 x^{2}+96 x +768}{x \ln \relax (3) \left (\ln \relax (x )^{2}-2 x \ln \relax (x )+x^{2}+6 \ln \relax (x )-8 x +9\right )}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.66, size = 103, normalized size = 3.32 \begin {gather*} \frac {x^{4} \log \relax (3) + x^{2} \log \relax (3) \log \relax (x)^{2} - 8 \, x^{3} \log \relax (3) + 3 \, x^{2} {\left (3 \, \log \relax (3) + 1\right )} - 2 \, {\left (x^{3} \log \relax (3) - 3 \, x^{2} \log \relax (3)\right )} \log \relax (x) + 96 \, x + 768}{x^{3} \log \relax (3) + x \log \relax (3) \log \relax (x)^{2} - 8 \, x^{2} \log \relax (3) + 9 \, x \log \relax (3) - 2 \, {\left (x^{2} \log \relax (3) - 3 \, x \log \relax (3)\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {13248\,x+{\ln \relax (x)}^2\,\left (\ln \relax (3)\,\left (6\,x^4-40\,x^3+54\,x^2\right )+3\,x^2-768\right )+\ln \relax (x)\,\left (2880\,x+\ln \relax (3)\,\left (-4\,x^5+44\,x^4-132\,x^3+108\,x^2\right )+204\,x^2-6144\right )-1335\,x^2-186\,x^3-3\,x^4+\ln \relax (3)\,\left (x^6-16\,x^5+82\,x^4-144\,x^3+81\,x^2\right )+\ln \relax (3)\,{\ln \relax (x)}^3\,\left (12\,x^2-4\,x^3\right )+x^2\,\ln \relax (3)\,{\ln \relax (x)}^4-11520}{\ln \relax (3)\,\left (x^6-16\,x^5+82\,x^4-144\,x^3+81\,x^2\right )+\ln \relax (3)\,{\ln \relax (x)}^2\,\left (6\,x^4-40\,x^3+54\,x^2\right )+\ln \relax (3)\,{\ln \relax (x)}^3\,\left (12\,x^2-4\,x^3\right )+x^2\,\ln \relax (3)\,{\ln \relax (x)}^4+\ln \relax (3)\,\ln \relax (x)\,\left (-4\,x^5+44\,x^4-132\,x^3+108\,x^2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.30, size = 61, normalized size = 1.97 \begin {gather*} x + \frac {3 x^{2} + 96 x + 768}{x^{3} \log {\relax (3 )} - 8 x^{2} \log {\relax (3 )} + x \log {\relax (3 )} \log {\relax (x )}^{2} + 9 x \log {\relax (3 )} + \left (- 2 x^{2} \log {\relax (3 )} + 6 x \log {\relax (3 )}\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________