Optimal. Leaf size=24 \[ \frac {\log \left (5 e^3\right )}{x \left (1+24 \left (5+5 e^{16}\right ) x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 20, normalized size of antiderivative = 0.83, number of steps used = 6, number of rules used = 4, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {6, 12, 1680, 261} \begin {gather*} \frac {3+\log (5)}{x \left (120 \left (1+e^{16}\right ) x+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 261
Rule 1680
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-1+\left (-240-240 e^{16}\right ) x\right ) \log \left (5 e^3\right )}{x^2+240 x^3+14400 x^4+14400 e^{32} x^4+e^{16} \left (240 x^3+28800 x^4\right )} \, dx\\ &=\int \frac {\left (-1+\left (-240-240 e^{16}\right ) x\right ) \log \left (5 e^3\right )}{x^2+240 x^3+\left (14400+14400 e^{32}\right ) x^4+e^{16} \left (240 x^3+28800 x^4\right )} \, dx\\ &=(3+\log (5)) \int \frac {-1+\left (-240-240 e^{16}\right ) x}{x^2+240 x^3+\left (14400+14400 e^{32}\right ) x^4+e^{16} \left (240 x^3+28800 x^4\right )} \, dx\\ &=(3+\log (5)) \operatorname {Subst}\left (\int \frac {55296000 \left (-1-e^{16}\right )^3 x}{\left (1-57600 \left (1+e^{16}\right )^2 x^2\right )^2} \, dx,x,\frac {240+240 e^{16}}{4 \left (14400+28800 e^{16}+14400 e^{32}\right )}+x\right )\\ &=-\left (\left (55296000 \left (1+e^{16}\right )^3 (3+\log (5))\right ) \operatorname {Subst}\left (\int \frac {x}{\left (1-57600 \left (1+e^{16}\right )^2 x^2\right )^2} \, dx,x,\frac {240+240 e^{16}}{4 \left (14400+28800 e^{16}+14400 e^{32}\right )}+x\right )\right )\\ &=\frac {3+\log (5)}{x \left (1+120 \left (1+e^{16}\right ) x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 0.83 \begin {gather*} \frac {3+\log (5)}{x \left (1+120 \left (1+e^{16}\right ) x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 21, normalized size = 0.88 \begin {gather*} \frac {\log \relax (5) + 3}{120 \, x^{2} e^{16} + 120 \, x^{2} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 21, normalized size = 0.88
method | result | size |
norman | \(\frac {\ln \relax (5)+3}{x \left (120 x \,{\mathrm e}^{16}+120 x +1\right )}\) | \(21\) |
risch | \(\frac {\ln \relax (5)+3}{x \left (120 x \,{\mathrm e}^{16}+120 x +1\right )}\) | \(21\) |
gosper | \(\frac {\ln \left (5 \,{\mathrm e}^{3}\right )}{x \left (120 x \,{\mathrm e}^{16}+120 x +1\right )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 19, normalized size = 0.79 \begin {gather*} \frac {\log \left (5 \, e^{3}\right )}{120 \, x^{2} {\left (e^{16} + 1\right )} + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 19, normalized size = 0.79 \begin {gather*} \frac {\ln \relax (5)+3}{\left (120\,{\mathrm {e}}^{16}+120\right )\,x^2+x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.81, size = 19, normalized size = 0.79 \begin {gather*} - \frac {-3 - \log {\relax (5 )}}{x^{2} \left (120 + 120 e^{16}\right ) + x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________