3.33.65
Optimal. Leaf size=24
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 20, normalized size of antiderivative = 0.83,
number of steps used = 6, number of rules used = 4, integrand size = 57, = 0.070, Rules used =
{6, 12, 1680, 261}
Antiderivative was successfully verified.
[In]
Int[((-1 - 240*x - 240*E^16*x)*Log[5*E^3])/(x^2 + 240*x^3 + 14400*x^4 + 14400*E^32*x^4 + E^16*(240*x^3 + 28800
*x^4)),x]
[Out]
(3 + Log[5])/(x*(1 + 120*(1 + E^16)*x))
Rule 6
Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] && !FreeQ[v, x]
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 261
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]
Rule 1680
Int[(Pq_)*(Q4_)^(p_), x_Symbol] :> With[{a = Coeff[Q4, x, 0], b = Coeff[Q4, x, 1], c = Coeff[Q4, x, 2], d = Co
eff[Q4, x, 3], e = Coeff[Q4, x, 4]}, Subst[Int[SimplifyIntegrand[(Pq /. x -> -(d/(4*e)) + x)*(a + d^4/(256*e^3
) - (b*d)/(8*e) + (c - (3*d^2)/(8*e))*x^2 + e*x^4)^p, x], x], x, d/(4*e) + x] /; EqQ[d^3 - 4*c*d*e + 8*b*e^2,
0] && NeQ[d, 0]] /; FreeQ[p, x] && PolyQ[Pq, x] && PolyQ[Q4, x, 4] && !IGtQ[p, 0]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 0.83
Antiderivative was successfully verified.
[In]
Integrate[((-1 - 240*x - 240*E^16*x)*Log[5*E^3])/(x^2 + 240*x^3 + 14400*x^4 + 14400*E^32*x^4 + E^16*(240*x^3 +
28800*x^4)),x]
[Out]
(3 + Log[5])/(x*(1 + 120*(1 + E^16)*x))
________________________________________________________________________________________
fricas [A] time = 0.65, size = 21, normalized size = 0.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-240*x*exp(16)-240*x-1)*log(5*exp(3))/(14400*x^4*exp(16)^2+(28800*x^4+240*x^3)*exp(16)+14400*x^4+24
0*x^3+x^2),x, algorithm="fricas")
[Out]
(log(5) + 3)/(120*x^2*e^16 + 120*x^2 + x)
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-240*x*exp(16)-240*x-1)*log(5*exp(3))/(14400*x^4*exp(16)^2+(28800*x^4+240*x^3)*exp(16)+14400*x^4+24
0*x^3+x^2),x, algorithm="giac")
[Out]
Exception raised: NotImplementedError >> Unable to parse Giac output: -ln(5*exp(3))*(-1/sageVARx+(-14400*exp(3
2)-28800*exp(16)-14400)*1/240/sqrt(exp(16)^2-exp(32))*ln(sqrt((28800*sageVARx*exp(32)+57600*sageVARx*exp(16)+2
8800*sageVARx+240*exp
________________________________________________________________________________________
maple [A] time = 0.09, size = 21, normalized size = 0.88
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
gosper |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-240*x*exp(16)-240*x-1)*ln(5*exp(3))/(14400*x^4*exp(16)^2+(28800*x^4+240*x^3)*exp(16)+14400*x^4+240*x^3+x
^2),x,method=_RETURNVERBOSE)
[Out]
(ln(5)+3)/x/(120*x*exp(16)+120*x+1)
________________________________________________________________________________________
maxima [A] time = 0.39, size = 19, normalized size = 0.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-240*x*exp(16)-240*x-1)*log(5*exp(3))/(14400*x^4*exp(16)^2+(28800*x^4+240*x^3)*exp(16)+14400*x^4+24
0*x^3+x^2),x, algorithm="maxima")
[Out]
log(5*e^3)/(120*x^2*(e^16 + 1) + x)
________________________________________________________________________________________
mupad [B] time = 0.17, size = 19, normalized size = 0.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(5*exp(3))*(240*x + 240*x*exp(16) + 1))/(exp(16)*(240*x^3 + 28800*x^4) + 14400*x^4*exp(32) + x^2 + 24
0*x^3 + 14400*x^4),x)
[Out]
(log(5) + 3)/(x + x^2*(120*exp(16) + 120))
________________________________________________________________________________________
sympy [A] time = 0.81, size = 19, normalized size = 0.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-240*x*exp(16)-240*x-1)*ln(5*exp(3))/(14400*x**4*exp(16)**2+(28800*x**4+240*x**3)*exp(16)+14400*x**
4+240*x**3+x**2),x)
[Out]
-(-3 - log(5))/(x**2*(120 + 120*exp(16)) + x)
________________________________________________________________________________________