3.33.66 14e3+x(255x+10log(4))dx

Optimal. Leaf size=18 54e3+x(4x+2log(4))

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 26, normalized size of antiderivative = 1.44, number of steps used = 3, number of rules used = 3, integrand size = 18, number of rulesintegrand size = 0.167, Rules used = {12, 2176, 2194} 5ex3454ex3(x+5log(16))

Antiderivative was successfully verified.

[In]

Int[(E^(-3 + x)*(-25 - 5*x + 10*Log[4]))/4,x]

[Out]

(5*E^(-3 + x))/4 - (5*E^(-3 + x)*(5 + x - Log[16]))/4

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=14e3+x(255x+10log(4))dx=54e3+x(5+xlog(16))+54e3+xdx=5e3+x454e3+x(5+xlog(16))

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 16, normalized size = 0.89 54e3+x(4+x2log(4))

Antiderivative was successfully verified.

[In]

Integrate[(E^(-3 + x)*(-25 - 5*x + 10*Log[4]))/4,x]

[Out]

(-5*E^(-3 + x)*(4 + x - 2*Log[4]))/4

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 13, normalized size = 0.72 54(x4log(2)+4)e(x3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(20*log(2)-5*x-25)/exp(3-x),x, algorithm="fricas")

[Out]

-5/4*(x - 4*log(2) + 4)*e^(x - 3)

________________________________________________________________________________________

giac [A]  time = 0.28, size = 13, normalized size = 0.72 54(x4log(2)+4)e(x3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(20*log(2)-5*x-25)/exp(3-x),x, algorithm="giac")

[Out]

-5/4*(x - 4*log(2) + 4)*e^(x - 3)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 16, normalized size = 0.89




method result size



risch (20ln(2)205x)ex34 16
norman (5x45+5ln(2))ex3 19
gosper 5(4ln(2)4x)ex34 20
derivativedivides 5ex3(3x)435ex34+5ex3ln(2) 39
default 5ex3(3x)435ex34+5ex3ln(2) 39
meijerg 25exe3+x(1exe3)45exe3+xln(2)(1exe3)5exe3+x+3(1(2xe3+2)exe32)4 69



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*(20*ln(2)-5*x-25)/exp(3-x),x,method=_RETURNVERBOSE)

[Out]

1/4*(20*ln(2)-20-5*x)*exp(x-3)

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 24, normalized size = 1.33 54(x1)e(x3)+5e(x3)log(2)254e(x3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(20*log(2)-5*x-25)/exp(3-x),x, algorithm="maxima")

[Out]

-5/4*(x - 1)*e^(x - 3) + 5*e^(x - 3)*log(2) - 25/4*e^(x - 3)

________________________________________________________________________________________

mupad [B]  time = 1.97, size = 15, normalized size = 0.83 e3ex(5x45ln(2)+5)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-exp(x - 3)*((5*x)/4 - 5*log(2) + 25/4),x)

[Out]

-exp(-3)*exp(x)*((5*x)/4 - 5*log(2) + 5)

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 15, normalized size = 0.83 (5x20+20log(2))ex34

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(20*ln(2)-5*x-25)/exp(3-x),x)

[Out]

(-5*x - 20 + 20*log(2))*exp(x - 3)/4

________________________________________________________________________________________