Optimal. Leaf size=35 \[ x+\frac {-1+e^{\frac {4}{\log (x)}}-\frac {2+x}{e^5}}{5+\frac {e^x}{3}-x} \]
________________________________________________________________________________________
Rubi [F] time = 2.98, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-7 x+\frac {1}{9} e^{5+2 x} x+e^5 \left (24 x-10 x^2+x^3\right )+\frac {1}{3} e^x \left (x+x^2+e^5 \left (11 x-2 x^2\right )\right )\right ) \log ^2(x)+e^{\frac {4}{\log (x)}} \left (-\frac {4 e^{5+x}}{3}+e^5 (-20+4 x)+\left (e^5 x-\frac {1}{3} e^{5+x} x\right ) \log ^2(x)\right )}{\left (\frac {1}{9} e^{5+2 x} x+\frac {1}{3} e^{5+x} \left (10 x-2 x^2\right )+e^5 \left (25 x-10 x^2+x^3\right )\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\frac {63}{e^5}+e^{2 x}-3 e^{x+\frac {4}{\log (x)}}+9 e^{\frac {4}{\log (x)}}+e^x (33-6 x)+3 e^{-5+x} (1+x)+9 \left (24-10 x+x^2\right )-\frac {12 e^{\frac {4}{\log (x)}} \left (15+e^x-3 x\right )}{x \log ^2(x)}}{\left (15+e^x-3 x\right )^2} \, dx\\ &=\int \left (-\frac {63}{e^5 \left (15+e^x-3 x\right )^2}+\frac {e^{2 x}}{\left (15+e^x-3 x\right )^2}+\frac {9 (-6+x) (-4+x)}{\left (15+e^x-3 x\right )^2}+\frac {3 e^{-5+x} (1+x)}{\left (15+e^x-3 x\right )^2}-\frac {3 e^x (-11+2 x)}{\left (15+e^x-3 x\right )^2}-\frac {3 e^{\frac {4}{\log (x)}} \left (60+4 e^x-12 x-3 x \log ^2(x)+e^x x \log ^2(x)\right )}{\left (15+e^x-3 x\right )^2 x \log ^2(x)}\right ) \, dx\\ &=3 \int \frac {e^{-5+x} (1+x)}{\left (15+e^x-3 x\right )^2} \, dx-3 \int \frac {e^x (-11+2 x)}{\left (15+e^x-3 x\right )^2} \, dx-3 \int \frac {e^{\frac {4}{\log (x)}} \left (60+4 e^x-12 x-3 x \log ^2(x)+e^x x \log ^2(x)\right )}{\left (15+e^x-3 x\right )^2 x \log ^2(x)} \, dx+9 \int \frac {(-6+x) (-4+x)}{\left (15+e^x-3 x\right )^2} \, dx-\frac {63 \int \frac {1}{\left (15+e^x-3 x\right )^2} \, dx}{e^5}+\int \frac {e^{2 x}}{\left (15+e^x-3 x\right )^2} \, dx\\ &=\frac {3 e^{\frac {4}{\log (x)}}}{15+e^x-3 x}+3 \int \left (\frac {e^{-5+x}}{\left (15+e^x-3 x\right )^2}+\frac {e^{-5+x} x}{\left (15+e^x-3 x\right )^2}\right ) \, dx-3 \int \left (-\frac {11 e^x}{\left (15+e^x-3 x\right )^2}+\frac {2 e^x x}{\left (15+e^x-3 x\right )^2}\right ) \, dx+9 \int \left (\frac {24}{\left (15+e^x-3 x\right )^2}-\frac {10 x}{\left (15+e^x-3 x\right )^2}+\frac {x^2}{\left (15+e^x-3 x\right )^2}\right ) \, dx-\frac {63 \int \frac {1}{\left (15+e^x-3 x\right )^2} \, dx}{e^5}+\int \frac {e^{2 x}}{\left (15+e^x-3 x\right )^2} \, dx\\ &=\frac {3 e^{\frac {4}{\log (x)}}}{15+e^x-3 x}+3 \int \frac {e^{-5+x}}{\left (15+e^x-3 x\right )^2} \, dx+3 \int \frac {e^{-5+x} x}{\left (15+e^x-3 x\right )^2} \, dx-6 \int \frac {e^x x}{\left (15+e^x-3 x\right )^2} \, dx+9 \int \frac {x^2}{\left (15+e^x-3 x\right )^2} \, dx+33 \int \frac {e^x}{\left (15+e^x-3 x\right )^2} \, dx-90 \int \frac {x}{\left (15+e^x-3 x\right )^2} \, dx+216 \int \frac {1}{\left (15+e^x-3 x\right )^2} \, dx-\frac {63 \int \frac {1}{\left (15+e^x-3 x\right )^2} \, dx}{e^5}+\int \frac {e^{2 x}}{\left (15+e^x-3 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 43, normalized size = 1.23 \begin {gather*} \frac {3 e^{\frac {4}{\log (x)}}}{15+e^x-3 x}+x-\frac {3 \left (2+e^5+x\right )}{e^5 \left (15+e^x-3 x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 56, normalized size = 1.60 \begin {gather*} \frac {{\left (x^{2} - 5 \, x + 1\right )} e^{5} - x e^{\left (x - \log \relax (3) + 5\right )} + x - e^{\left (\frac {4}{\log \relax (x)} + 5\right )} + 2}{{\left (x - 5\right )} e^{5} - e^{\left (x - \log \relax (3) + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.62, size = 55, normalized size = 1.57
method | result | size |
risch | \(\frac {\left (x^{2} {\mathrm e}^{5}-\frac {x \,{\mathrm e}^{5+x}}{3}-5 x \,{\mathrm e}^{5}+{\mathrm e}^{5}+x +2\right ) {\mathrm e}^{-5}}{x -\frac {{\mathrm e}^{x}}{3}-5}-\frac {{\mathrm e}^{\frac {4}{\ln \relax (x )}}}{x -\frac {{\mathrm e}^{x}}{3}-5}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 59, normalized size = 1.69 \begin {gather*} \frac {3 \, x^{2} e^{5} - 3 \, x {\left (5 \, e^{5} - 1\right )} - x e^{\left (x + 5\right )} + 3 \, e^{5} - 3 \, e^{\left (\frac {4}{\log \relax (x)} + 5\right )} + 6}{3 \, x e^{5} - 15 \, e^{5} - e^{\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.75, size = 52, normalized size = 1.49 \begin {gather*} -\frac {{\mathrm {e}}^{-5}\,\left (3\,x+3\,{\mathrm {e}}^5-15\,x\,{\mathrm {e}}^5+3\,x^2\,{\mathrm {e}}^5-3\,{\mathrm {e}}^{\frac {4}{\ln \relax (x)}}\,{\mathrm {e}}^5-x\,{\mathrm {e}}^5\,{\mathrm {e}}^x+6\right )}{{\mathrm {e}}^x-3\,x+15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 41, normalized size = 1.17 \begin {gather*} x + \frac {- 3 x + 3 e^{5} e^{\frac {4}{\log {\relax (x )}}} - 3 e^{5} - 6}{- 3 x e^{5} + e^{5} e^{x} + 15 e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________