Optimal. Leaf size=25 \[ \frac {\log \left (-x+x^2 \left (e^x-\log (x)\right )^2\right )}{-1+x} \]
________________________________________________________________________________________
Rubi [F] time = 17.68, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1-x+e^x \left (2 x-2 x^2\right )+e^{2 x} \left (-2 x+2 x^3\right )+\left (-2 x+2 x^2+e^x \left (4 x-2 x^2-2 x^3\right )\right ) \log (x)+\left (-2 x+2 x^2\right ) \log ^2(x)+\left (x-e^{2 x} x^2+2 e^x x^2 \log (x)-x^2 \log ^2(x)\right ) \log \left (-x+e^{2 x} x^2-2 e^x x^2 \log (x)+x^2 \log ^2(x)\right )}{-x+2 x^2-x^3+e^{2 x} \left (x^2-2 x^3+x^4\right )+e^x \left (-2 x^2+4 x^3-2 x^4\right ) \log (x)+\left (x^2-2 x^3+x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+x-e^x \left (2 x-2 x^2\right )-e^{2 x} \left (-2 x+2 x^3\right )-\left (-2 x+2 x^2+e^x \left (4 x-2 x^2-2 x^3\right )\right ) \log (x)-\left (-2 x+2 x^2\right ) \log ^2(x)-\left (x-e^{2 x} x^2+2 e^x x^2 \log (x)-x^2 \log ^2(x)\right ) \log \left (-x+e^{2 x} x^2-2 e^x x^2 \log (x)+x^2 \log ^2(x)\right )}{(1-x)^2 x \left (1-e^{2 x} x+2 e^x x \log (x)-x \log ^2(x)\right )} \, dx\\ &=\int \frac {-1+x+2 e^x (-1+x) x-2 e^{2 x} x \left (-1+x^2\right )+2 (-1+x) x \left (-1+e^x (2+x)\right ) \log (x)-2 (-1+x) x \log ^2(x)+x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right ) \log \left (x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )\right )}{(1-x)^2 x \left (1-e^{2 x} x+2 e^x x \log (x)-x \log ^2(x)\right )} \, dx\\ &=\int \left (\frac {1+2 x-2 e^x x+2 x \log (x)+2 e^x x^2 \log (x)-2 x^2 \log ^2(x)}{(-1+x) x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}+\frac {-2+2 x^2-x \log \left (x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )\right )}{(-1+x)^2 x}\right ) \, dx\\ &=\int \frac {1+2 x-2 e^x x+2 x \log (x)+2 e^x x^2 \log (x)-2 x^2 \log ^2(x)}{(-1+x) x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx+\int \frac {-2+2 x^2-x \log \left (x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )\right )}{(-1+x)^2 x} \, dx\\ &=\int \left (\frac {1+2 x-2 e^x x+2 x \log (x)+2 e^x x^2 \log (x)-2 x^2 \log ^2(x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}-\frac {1+2 x-2 e^x x+2 x \log (x)+2 e^x x^2 \log (x)-2 x^2 \log ^2(x)}{x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}\right ) \, dx+\int \left (\frac {2 (1+x)}{(-1+x) x}-\frac {\log \left (-x+e^{2 x} x^2-2 e^x x^2 \log (x)+x^2 \log ^2(x)\right )}{(1-x)^2}\right ) \, dx\\ &=2 \int \frac {1+x}{(-1+x) x} \, dx+\int \frac {1+2 x-2 e^x x+2 x \log (x)+2 e^x x^2 \log (x)-2 x^2 \log ^2(x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-\int \frac {1+2 x-2 e^x x+2 x \log (x)+2 e^x x^2 \log (x)-2 x^2 \log ^2(x)}{x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-\int \frac {\log \left (-x+e^{2 x} x^2-2 e^x x^2 \log (x)+x^2 \log ^2(x)\right )}{(1-x)^2} \, dx\\ &=2 \int \left (\frac {2}{-1+x}-\frac {1}{x}\right ) \, dx-\int \left (\frac {2}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}-\frac {2 e^x}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}+\frac {1}{x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}+\frac {2 \log (x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}+\frac {2 e^x x \log (x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}-\frac {2 x \log ^2(x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}\right ) \, dx+\int \left (\frac {1}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}+\frac {2 x}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}-\frac {2 e^x x}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}+\frac {2 x \log (x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}+\frac {2 e^x x^2 \log (x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}-\frac {2 x^2 \log ^2(x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}\right ) \, dx-\int \frac {\log \left (-x+e^{2 x} x^2-2 e^x x^2 \log (x)+x^2 \log ^2(x)\right )}{(1-x)^2} \, dx\\ &=4 \log (1-x)-2 \log (x)-2 \int \frac {1}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx+2 \int \frac {e^x}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx+2 \int \frac {x}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-2 \int \frac {e^x x}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-2 \int \frac {\log (x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx-2 \int \frac {e^x x \log (x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx+2 \int \frac {x \log (x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx+2 \int \frac {e^x x^2 \log (x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx+2 \int \frac {x \log ^2(x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx-2 \int \frac {x^2 \log ^2(x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx+\int \frac {1}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-\int \frac {1}{x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-\int \frac {\log \left (-x+e^{2 x} x^2-2 e^x x^2 \log (x)+x^2 \log ^2(x)\right )}{(1-x)^2} \, dx\\ &=4 \log (1-x)-2 \log (x)-2 \int \frac {1}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx+2 \int \frac {e^x}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx-2 \int \frac {\log (x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx-2 \int \frac {e^x x \log (x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx+2 \int \frac {x \log ^2(x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx+2 \int \left (\frac {1}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}+\frac {1}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}\right ) \, dx-2 \int \left (\frac {e^x}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}+\frac {e^x}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}\right ) \, dx+2 \int \left (\frac {\log (x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}+\frac {\log (x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}\right ) \, dx+2 \int \left (\frac {e^x \log (x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}+\frac {e^x \log (x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}+\frac {e^x x \log (x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}\right ) \, dx-2 \int \left (\frac {\log ^2(x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}+\frac {\log ^2(x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )}+\frac {x \log ^2(x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)}\right ) \, dx+\int \frac {1}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-\int \frac {1}{x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-\int \frac {\log \left (-x+e^{2 x} x^2-2 e^x x^2 \log (x)+x^2 \log ^2(x)\right )}{(1-x)^2} \, dx\\ &=4 \log (1-x)-2 \log (x)+2 \int \frac {1}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-2 \int \frac {e^x}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx+2 \int \frac {e^x \log (x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx+2 \int \frac {\log (x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx+2 \int \frac {e^x \log (x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-2 \int \frac {\log ^2(x)}{-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)} \, dx-2 \int \frac {\log ^2(x)}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx+\int \frac {1}{(-1+x) \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-\int \frac {1}{x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )} \, dx-\int \frac {\log \left (-x+e^{2 x} x^2-2 e^x x^2 \log (x)+x^2 \log ^2(x)\right )}{(1-x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 32, normalized size = 1.28 \begin {gather*} \frac {\log \left (x \left (-1+e^{2 x} x-2 e^x x \log (x)+x \log ^2(x)\right )\right )}{-1+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 36, normalized size = 1.44 \begin {gather*} \frac {\log \left (-2 \, x^{2} e^{x} \log \relax (x) + x^{2} \log \relax (x)^{2} + x^{2} e^{\left (2 \, x\right )} - x\right )}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.58, size = 31, normalized size = 1.24 \begin {gather*} \frac {\log \left (-2 \, x e^{x} \log \relax (x) + x \log \relax (x)^{2} + x e^{\left (2 \, x\right )} - 1\right ) + \log \relax (x)}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.32, size = 220, normalized size = 8.80
method | result | size |
risch | \(\frac {\ln \left (-1+\left ({\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} \ln \relax (x )+\ln \relax (x )^{2}\right ) x \right )}{x -1}+\frac {-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (1-\left ({\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} \ln \relax (x )+\ln \relax (x )^{2}\right ) x \right )\right ) \mathrm {csgn}\left (i x \left (1-\left ({\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} \ln \relax (x )+\ln \relax (x )^{2}\right ) x \right )\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (1-\left ({\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} \ln \relax (x )+\ln \relax (x )^{2}\right ) x \right )\right )^{2}-i \pi \,\mathrm {csgn}\left (i \left (1-\left ({\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} \ln \relax (x )+\ln \relax (x )^{2}\right ) x \right )\right ) \mathrm {csgn}\left (i x \left (1-\left ({\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} \ln \relax (x )+\ln \relax (x )^{2}\right ) x \right )\right )^{2}+i \pi \mathrm {csgn}\left (i x \left (1-\left ({\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} \ln \relax (x )+\ln \relax (x )^{2}\right ) x \right )\right )^{3}+2 \ln \relax (x )}{2 x -2}\) | \(220\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.87, size = 31, normalized size = 1.24 \begin {gather*} \frac {\log \left (-2 \, x e^{x} \log \relax (x) + x \log \relax (x)^{2} + x e^{\left (2 \, x\right )} - 1\right ) + \log \relax (x)}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.70, size = 36, normalized size = 1.44 \begin {gather*} \frac {\ln \left (x^2\,{\mathrm {e}}^{2\,x}-x+x^2\,{\ln \relax (x)}^2-2\,x^2\,{\mathrm {e}}^x\,\ln \relax (x)\right )}{x-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.62, size = 34, normalized size = 1.36 \begin {gather*} \frac {\log {\left (x^{2} e^{2 x} - 2 x^{2} e^{x} \log {\relax (x )} + x^{2} \log {\relax (x )}^{2} - x \right )}}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________