3.33.68 ex(3+(93x)log(x))x4dx

Optimal. Leaf size=14 5+3exlog(x)x3

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 12, normalized size of antiderivative = 0.86, number of steps used = 3, number of rules used = 3, integrand size = 19, number of rulesintegrand size = 0.158, Rules used = {6741, 12, 2288} 3exlog(x)x3

Antiderivative was successfully verified.

[In]

Int[(3 + (-9 - 3*x)*Log[x])/(E^x*x^4),x]

[Out]

(3*Log[x])/(E^x*x^3)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rubi steps

integral=3ex(13log(x)xlog(x))x4dx=3ex(13log(x)xlog(x))x4dx=3exlog(x)x3

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 12, normalized size = 0.86 3exlog(x)x3

Antiderivative was successfully verified.

[In]

Integrate[(3 + (-9 - 3*x)*Log[x])/(E^x*x^4),x]

[Out]

(3*Log[x])/(E^x*x^3)

________________________________________________________________________________________

fricas [A]  time = 0.69, size = 11, normalized size = 0.79 3e(x)log(x)x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x-9)*log(x)+3)/exp(x)/x^4,x, algorithm="fricas")

[Out]

3*e^(-x)*log(x)/x^3

________________________________________________________________________________________

giac [A]  time = 0.21, size = 11, normalized size = 0.79 3e(x)log(x)x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x-9)*log(x)+3)/exp(x)/x^4,x, algorithm="giac")

[Out]

3*e^(-x)*log(x)/x^3

________________________________________________________________________________________

maple [A]  time = 0.06, size = 12, normalized size = 0.86




method result size



norman 3ln(x)exx3 12
risch 3ln(x)exx3 12



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-3*x-9)*ln(x)+3)/exp(x)/x^4,x,method=_RETURNVERBOSE)

[Out]

3*ln(x)/x^3/exp(x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 3e(x)log(x)x33Γ(3,x)3e(x)x4dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x-9)*log(x)+3)/exp(x)/x^4,x, algorithm="maxima")

[Out]

3*e^(-x)*log(x)/x^3 - 3*gamma(-3, x) - 3*integrate(e^(-x)/x^4, x)

________________________________________________________________________________________

mupad [B]  time = 1.96, size = 11, normalized size = 0.79 3exln(x)x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(-x)*(log(x)*(3*x + 9) - 3))/x^4,x)

[Out]

(3*exp(-x)*log(x))/x^3

________________________________________________________________________________________

sympy [A]  time = 0.27, size = 10, normalized size = 0.71 3exlog(x)x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-3*x-9)*ln(x)+3)/exp(x)/x**4,x)

[Out]

3*exp(-x)*log(x)/x**3

________________________________________________________________________________________