Optimal. Leaf size=15 \[ \frac {36 x^2}{49 (-2 x+\log (x))} \]
________________________________________________________________________________________
Rubi [F] time = 0.38, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-36 x-72 x^2+72 x \log (x)}{196 x^2-196 x \log (x)+49 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {36 x (-1-2 x+2 \log (x))}{49 (2 x-\log (x))^2} \, dx\\ &=\frac {36}{49} \int \frac {x (-1-2 x+2 \log (x))}{(2 x-\log (x))^2} \, dx\\ &=\frac {36}{49} \int \left (\frac {x (-1+2 x)}{(2 x-\log (x))^2}-\frac {2 x}{2 x-\log (x)}\right ) \, dx\\ &=\frac {36}{49} \int \frac {x (-1+2 x)}{(2 x-\log (x))^2} \, dx-\frac {72}{49} \int \frac {x}{2 x-\log (x)} \, dx\\ &=\frac {36}{49} \int \left (-\frac {x}{(2 x-\log (x))^2}+\frac {2 x^2}{(2 x-\log (x))^2}\right ) \, dx-\frac {72}{49} \int \frac {x}{2 x-\log (x)} \, dx\\ &=-\left (\frac {36}{49} \int \frac {x}{(2 x-\log (x))^2} \, dx\right )+\frac {72}{49} \int \frac {x^2}{(2 x-\log (x))^2} \, dx-\frac {72}{49} \int \frac {x}{2 x-\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 15, normalized size = 1.00 \begin {gather*} \frac {36 x^2}{49 (-2 x+\log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 15, normalized size = 1.00 \begin {gather*} -\frac {36 \, x^{2}}{49 \, {\left (2 \, x - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 15, normalized size = 1.00 \begin {gather*} -\frac {36 \, x^{2}}{49 \, {\left (2 \, x - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 16, normalized size = 1.07
method | result | size |
norman | \(-\frac {36 x^{2}}{49 \left (2 x -\ln \relax (x )\right )}\) | \(16\) |
risch | \(-\frac {36 x^{2}}{49 \left (2 x -\ln \relax (x )\right )}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 15, normalized size = 1.00 \begin {gather*} -\frac {36 \, x^{2}}{49 \, {\left (2 \, x - \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.05, size = 15, normalized size = 1.00 \begin {gather*} -\frac {36\,x^2}{49\,\left (2\,x-\ln \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 0.80 \begin {gather*} \frac {36 x^{2}}{- 98 x + 49 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________