Optimal. Leaf size=33 \[ \frac {5}{\frac {5}{1+e^{3 e^{-e^5}}}+x^2+(1+x \log (x))^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.71, antiderivative size = 78, normalized size of antiderivative = 2.36, number of steps used = 3, number of rules used = 3, integrand size = 279, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.011, Rules used = {6688, 12, 6686} \begin {gather*} \frac {5 \left (1+e^{3 e^{-e^5}}\right )}{x^2+e^{3 e^{-e^5}} \left (x^2+1\right )+\left (1+e^{3 e^{-e^5}}\right ) x^2 \log ^2(x)+2 \left (1+e^{3 e^{-e^5}}\right ) x \log (x)+6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {10 \left (1+e^{3 e^{-e^5}}\right )^2 \left (-1-x-(1+x) \log (x)-x \log ^2(x)\right )}{\left (6+x^2+e^{3 e^{-e^5}} \left (1+x^2\right )+2 \left (1+e^{3 e^{-e^5}}\right ) x \log (x)+\left (1+e^{3 e^{-e^5}}\right ) x^2 \log ^2(x)\right )^2} \, dx\\ &=\left (10 \left (1+e^{3 e^{-e^5}}\right )^2\right ) \int \frac {-1-x-(1+x) \log (x)-x \log ^2(x)}{\left (6+x^2+e^{3 e^{-e^5}} \left (1+x^2\right )+2 \left (1+e^{3 e^{-e^5}}\right ) x \log (x)+\left (1+e^{3 e^{-e^5}}\right ) x^2 \log ^2(x)\right )^2} \, dx\\ &=\frac {5 \left (1+e^{3 e^{-e^5}}\right )}{6+x^2+e^{3 e^{-e^5}} \left (1+x^2\right )+2 \left (1+e^{3 e^{-e^5}}\right ) x \log (x)+\left (1+e^{3 e^{-e^5}}\right ) x^2 \log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 97, normalized size = 2.94 \begin {gather*} \frac {10 \left (1+e^{3 e^{-e^5}}\right )^2}{\left (2+2 e^{3 e^{-e^5}}\right ) \left (6+x^2+e^{3 e^{-e^5}} \left (1+x^2\right )+2 \left (1+e^{3 e^{-e^5}}\right ) x \log (x)+\left (1+e^{3 e^{-e^5}}\right ) x^2 \log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 59, normalized size = 1.79 \begin {gather*} \frac {5 \, {\left (e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} + 1\right )}}{x^{2} \log \relax (x)^{2} + x^{2} + {\left (x^{2} \log \relax (x)^{2} + x^{2} + 2 \, x \log \relax (x) + 1\right )} e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} + 2 \, x \log \relax (x) + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.08, size = 81, normalized size = 2.45 \begin {gather*} \frac {5 \, {\left (e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} + 1\right )}}{x^{2} e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} \log \relax (x)^{2} + x^{2} \log \relax (x)^{2} + x^{2} e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} + 2 \, x e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} \log \relax (x) + x^{2} + 2 \, x \log \relax (x) + e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.72, size = 83, normalized size = 2.52
method | result | size |
norman | \(\frac {5 \,{\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}}+5}{\ln \relax (x )^{2} {\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}} x^{2}+{\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}} x^{2}+2 \ln \relax (x ) {\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}} x +x^{2} \ln \relax (x )^{2}+{\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}}+x^{2}+2 x \ln \relax (x )+6}\) | \(83\) |
risch | \(\frac {5 \,{\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}}}{\ln \relax (x )^{2} {\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}} x^{2}+{\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}} x^{2}+2 \ln \relax (x ) {\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}} x +x^{2} \ln \relax (x )^{2}+{\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}}+x^{2}+2 x \ln \relax (x )+6}+\frac {5}{\ln \relax (x )^{2} {\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}} x^{2}+{\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}} x^{2}+2 \ln \relax (x ) {\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}} x +x^{2} \ln \relax (x )^{2}+{\mathrm e}^{3 \,{\mathrm e}^{-{\mathrm e}^{5}}}+x^{2}+2 x \ln \relax (x )+6}\) | \(152\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.92, size = 71, normalized size = 2.15 \begin {gather*} \frac {5 \, {\left (e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} + 1\right )}}{x^{2} {\left (e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} + 1\right )} \log \relax (x)^{2} + x^{2} {\left (e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} + 1\right )} + 2 \, x {\left (e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} + 1\right )} \log \relax (x) + e^{\left (3 \, e^{\left (-e^{5}\right )}\right )} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {10\,x+10\,x\,{\ln \relax (x)}^2+{\mathrm {e}}^{6\,{\mathrm {e}}^{-{\mathrm {e}}^5}}\,\left (10\,x\,{\ln \relax (x)}^2+\left (10\,x+10\right )\,\ln \relax (x)+10\,x+10\right )+{\mathrm {e}}^{3\,{\mathrm {e}}^{-{\mathrm {e}}^5}}\,\left (20\,x\,{\ln \relax (x)}^2+\left (20\,x+20\right )\,\ln \relax (x)+20\,x+20\right )+\ln \relax (x)\,\left (10\,x+10\right )+10}{{\mathrm {e}}^{3\,{\mathrm {e}}^{-{\mathrm {e}}^5}}\,\left ({\ln \relax (x)}^2\,\left (4\,x^4+22\,x^2\right )+8\,x^3\,{\ln \relax (x)}^3+2\,x^4\,{\ln \relax (x)}^4+\ln \relax (x)\,\left (8\,x^3+28\,x\right )+14\,x^2+2\,x^4+12\right )+{\ln \relax (x)}^2\,\left (2\,x^4+16\,x^2\right )+4\,x^3\,{\ln \relax (x)}^3+x^4\,{\ln \relax (x)}^4+\ln \relax (x)\,\left (4\,x^3+24\,x\right )+{\mathrm {e}}^{6\,{\mathrm {e}}^{-{\mathrm {e}}^5}}\,\left ({\ln \relax (x)}^2\,\left (2\,x^4+6\,x^2\right )+4\,x^3\,{\ln \relax (x)}^3+x^4\,{\ln \relax (x)}^4+\ln \relax (x)\,\left (4\,x^3+4\,x\right )+2\,x^2+x^4+1\right )+12\,x^2+x^4+36} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.78, size = 75, normalized size = 2.27 \begin {gather*} \frac {5 + 5 e^{\frac {3}{e^{e^{5}}}}}{x^{2} + x^{2} e^{\frac {3}{e^{e^{5}}}} + \left (2 x + 2 x e^{\frac {3}{e^{e^{5}}}}\right ) \log {\relax (x )} + \left (x^{2} + x^{2} e^{\frac {3}{e^{e^{5}}}}\right ) \log {\relax (x )}^{2} + e^{\frac {3}{e^{e^{5}}}} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________