3.33.74
Optimal. Leaf size=33
________________________________________________________________________________________
Rubi [B] time = 0.71, antiderivative size = 78, normalized size of antiderivative = 2.36,
number of steps used = 3, number of rules used = 3, integrand size = 279, = 0.011, Rules used
= {6688, 12, 6686}
Antiderivative was successfully verified.
[In]
Int[(-10 - 10*x + (-10 - 10*x)*Log[x] - 10*x*Log[x]^2 + E^(3/E^E^5)*(-20 - 20*x + (-20 - 20*x)*Log[x] - 20*x*L
og[x]^2) + E^(6/E^E^5)*(-10 - 10*x + (-10 - 10*x)*Log[x] - 10*x*Log[x]^2))/(36 + 12*x^2 + x^4 + (24*x + 4*x^3)
*Log[x] + (16*x^2 + 2*x^4)*Log[x]^2 + 4*x^3*Log[x]^3 + x^4*Log[x]^4 + E^(6/E^E^5)*(1 + 2*x^2 + x^4 + (4*x + 4*
x^3)*Log[x] + (6*x^2 + 2*x^4)*Log[x]^2 + 4*x^3*Log[x]^3 + x^4*Log[x]^4) + E^(3/E^E^5)*(12 + 14*x^2 + 2*x^4 + (
28*x + 8*x^3)*Log[x] + (22*x^2 + 4*x^4)*Log[x]^2 + 8*x^3*Log[x]^3 + 2*x^4*Log[x]^4)),x]
[Out]
(5*(1 + E^(3/E^E^5)))/(6 + x^2 + E^(3/E^E^5)*(1 + x^2) + 2*(1 + E^(3/E^E^5))*x*Log[x] + (1 + E^(3/E^E^5))*x^2*
Log[x]^2)
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.12, size = 97, normalized size = 2.94
Antiderivative was successfully verified.
[In]
Integrate[(-10 - 10*x + (-10 - 10*x)*Log[x] - 10*x*Log[x]^2 + E^(3/E^E^5)*(-20 - 20*x + (-20 - 20*x)*Log[x] -
20*x*Log[x]^2) + E^(6/E^E^5)*(-10 - 10*x + (-10 - 10*x)*Log[x] - 10*x*Log[x]^2))/(36 + 12*x^2 + x^4 + (24*x +
4*x^3)*Log[x] + (16*x^2 + 2*x^4)*Log[x]^2 + 4*x^3*Log[x]^3 + x^4*Log[x]^4 + E^(6/E^E^5)*(1 + 2*x^2 + x^4 + (4*
x + 4*x^3)*Log[x] + (6*x^2 + 2*x^4)*Log[x]^2 + 4*x^3*Log[x]^3 + x^4*Log[x]^4) + E^(3/E^E^5)*(12 + 14*x^2 + 2*x
^4 + (28*x + 8*x^3)*Log[x] + (22*x^2 + 4*x^4)*Log[x]^2 + 8*x^3*Log[x]^3 + 2*x^4*Log[x]^4)),x]
[Out]
(10*(1 + E^(3/E^E^5))^2)/((2 + 2*E^(3/E^E^5))*(6 + x^2 + E^(3/E^E^5)*(1 + x^2) + 2*(1 + E^(3/E^E^5))*x*Log[x]
+ (1 + E^(3/E^E^5))*x^2*Log[x]^2))
________________________________________________________________________________________
fricas [A] time = 0.53, size = 59, normalized size = 1.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-10*x*log(x)^2+(-10*x-10)*log(x)-10*x-10)*exp(3/exp(exp(5)))^2+(-20*x*log(x)^2+(-20*x-20)*log(x)-2
0*x-20)*exp(3/exp(exp(5)))-10*x*log(x)^2+(-10*x-10)*log(x)-10*x-10)/((x^4*log(x)^4+4*x^3*log(x)^3+(2*x^4+6*x^2
)*log(x)^2+(4*x^3+4*x)*log(x)+x^4+2*x^2+1)*exp(3/exp(exp(5)))^2+(2*x^4*log(x)^4+8*x^3*log(x)^3+(4*x^4+22*x^2)*
log(x)^2+(8*x^3+28*x)*log(x)+2*x^4+14*x^2+12)*exp(3/exp(exp(5)))+x^4*log(x)^4+4*x^3*log(x)^3+(2*x^4+16*x^2)*lo
g(x)^2+(4*x^3+24*x)*log(x)+x^4+12*x^2+36),x, algorithm="fricas")
[Out]
5*(e^(3*e^(-e^5)) + 1)/(x^2*log(x)^2 + x^2 + (x^2*log(x)^2 + x^2 + 2*x*log(x) + 1)*e^(3*e^(-e^5)) + 2*x*log(x)
+ 6)
________________________________________________________________________________________
giac [B] time = 3.08, size = 81, normalized size = 2.45
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-10*x*log(x)^2+(-10*x-10)*log(x)-10*x-10)*exp(3/exp(exp(5)))^2+(-20*x*log(x)^2+(-20*x-20)*log(x)-2
0*x-20)*exp(3/exp(exp(5)))-10*x*log(x)^2+(-10*x-10)*log(x)-10*x-10)/((x^4*log(x)^4+4*x^3*log(x)^3+(2*x^4+6*x^2
)*log(x)^2+(4*x^3+4*x)*log(x)+x^4+2*x^2+1)*exp(3/exp(exp(5)))^2+(2*x^4*log(x)^4+8*x^3*log(x)^3+(4*x^4+22*x^2)*
log(x)^2+(8*x^3+28*x)*log(x)+2*x^4+14*x^2+12)*exp(3/exp(exp(5)))+x^4*log(x)^4+4*x^3*log(x)^3+(2*x^4+16*x^2)*lo
g(x)^2+(4*x^3+24*x)*log(x)+x^4+12*x^2+36),x, algorithm="giac")
[Out]
5*(e^(3*e^(-e^5)) + 1)/(x^2*e^(3*e^(-e^5))*log(x)^2 + x^2*log(x)^2 + x^2*e^(3*e^(-e^5)) + 2*x*e^(3*e^(-e^5))*l
og(x) + x^2 + 2*x*log(x) + e^(3*e^(-e^5)) + 6)
________________________________________________________________________________________
maple [B] time = 0.72, size = 83, normalized size = 2.52
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-10*x*ln(x)^2+(-10*x-10)*ln(x)-10*x-10)*exp(3/exp(exp(5)))^2+(-20*x*ln(x)^2+(-20*x-20)*ln(x)-20*x-20)*ex
p(3/exp(exp(5)))-10*x*ln(x)^2+(-10*x-10)*ln(x)-10*x-10)/((x^4*ln(x)^4+4*x^3*ln(x)^3+(2*x^4+6*x^2)*ln(x)^2+(4*x
^3+4*x)*ln(x)+x^4+2*x^2+1)*exp(3/exp(exp(5)))^2+(2*x^4*ln(x)^4+8*x^3*ln(x)^3+(4*x^4+22*x^2)*ln(x)^2+(8*x^3+28*
x)*ln(x)+2*x^4+14*x^2+12)*exp(3/exp(exp(5)))+x^4*ln(x)^4+4*x^3*ln(x)^3+(2*x^4+16*x^2)*ln(x)^2+(4*x^3+24*x)*ln(
x)+x^4+12*x^2+36),x,method=_RETURNVERBOSE)
[Out]
(5*exp(1/exp(exp(5)))^3+5)/(ln(x)^2*exp(3/exp(exp(5)))*x^2+x^2*ln(x)^2+2*ln(x)*exp(3/exp(exp(5)))*x+exp(3/exp(
exp(5)))*x^2+2*x*ln(x)+x^2+exp(3/exp(exp(5)))+6)
________________________________________________________________________________________
maxima [B] time = 0.92, size = 71, normalized size = 2.15
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-10*x*log(x)^2+(-10*x-10)*log(x)-10*x-10)*exp(3/exp(exp(5)))^2+(-20*x*log(x)^2+(-20*x-20)*log(x)-2
0*x-20)*exp(3/exp(exp(5)))-10*x*log(x)^2+(-10*x-10)*log(x)-10*x-10)/((x^4*log(x)^4+4*x^3*log(x)^3+(2*x^4+6*x^2
)*log(x)^2+(4*x^3+4*x)*log(x)+x^4+2*x^2+1)*exp(3/exp(exp(5)))^2+(2*x^4*log(x)^4+8*x^3*log(x)^3+(4*x^4+22*x^2)*
log(x)^2+(8*x^3+28*x)*log(x)+2*x^4+14*x^2+12)*exp(3/exp(exp(5)))+x^4*log(x)^4+4*x^3*log(x)^3+(2*x^4+16*x^2)*lo
g(x)^2+(4*x^3+24*x)*log(x)+x^4+12*x^2+36),x, algorithm="maxima")
[Out]
5*(e^(3*e^(-e^5)) + 1)/(x^2*(e^(3*e^(-e^5)) + 1)*log(x)^2 + x^2*(e^(3*e^(-e^5)) + 1) + 2*x*(e^(3*e^(-e^5)) + 1
)*log(x) + e^(3*e^(-e^5)) + 6)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(10*x + 10*x*log(x)^2 + exp(6*exp(-exp(5)))*(10*x + 10*x*log(x)^2 + log(x)*(10*x + 10) + 10) + exp(3*exp(
-exp(5)))*(20*x + 20*x*log(x)^2 + log(x)*(20*x + 20) + 20) + log(x)*(10*x + 10) + 10)/(exp(3*exp(-exp(5)))*(lo
g(x)^2*(22*x^2 + 4*x^4) + 8*x^3*log(x)^3 + 2*x^4*log(x)^4 + log(x)*(28*x + 8*x^3) + 14*x^2 + 2*x^4 + 12) + log
(x)^2*(16*x^2 + 2*x^4) + 4*x^3*log(x)^3 + x^4*log(x)^4 + log(x)*(24*x + 4*x^3) + exp(6*exp(-exp(5)))*(log(x)^2
*(6*x^2 + 2*x^4) + 4*x^3*log(x)^3 + x^4*log(x)^4 + log(x)*(4*x + 4*x^3) + 2*x^2 + x^4 + 1) + 12*x^2 + x^4 + 36
),x)
[Out]
int(-(10*x + 10*x*log(x)^2 + exp(6*exp(-exp(5)))*(10*x + 10*x*log(x)^2 + log(x)*(10*x + 10) + 10) + exp(3*exp(
-exp(5)))*(20*x + 20*x*log(x)^2 + log(x)*(20*x + 20) + 20) + log(x)*(10*x + 10) + 10)/(exp(3*exp(-exp(5)))*(lo
g(x)^2*(22*x^2 + 4*x^4) + 8*x^3*log(x)^3 + 2*x^4*log(x)^4 + log(x)*(28*x + 8*x^3) + 14*x^2 + 2*x^4 + 12) + log
(x)^2*(16*x^2 + 2*x^4) + 4*x^3*log(x)^3 + x^4*log(x)^4 + log(x)*(24*x + 4*x^3) + exp(6*exp(-exp(5)))*(log(x)^2
*(6*x^2 + 2*x^4) + 4*x^3*log(x)^3 + x^4*log(x)^4 + log(x)*(4*x + 4*x^3) + 2*x^2 + x^4 + 1) + 12*x^2 + x^4 + 36
), x)
________________________________________________________________________________________
sympy [B] time = 0.78, size = 75, normalized size = 2.27
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-10*x*ln(x)**2+(-10*x-10)*ln(x)-10*x-10)*exp(3/exp(exp(5)))**2+(-20*x*ln(x)**2+(-20*x-20)*ln(x)-20
*x-20)*exp(3/exp(exp(5)))-10*x*ln(x)**2+(-10*x-10)*ln(x)-10*x-10)/((x**4*ln(x)**4+4*x**3*ln(x)**3+(2*x**4+6*x*
*2)*ln(x)**2+(4*x**3+4*x)*ln(x)+x**4+2*x**2+1)*exp(3/exp(exp(5)))**2+(2*x**4*ln(x)**4+8*x**3*ln(x)**3+(4*x**4+
22*x**2)*ln(x)**2+(8*x**3+28*x)*ln(x)+2*x**4+14*x**2+12)*exp(3/exp(exp(5)))+x**4*ln(x)**4+4*x**3*ln(x)**3+(2*x
**4+16*x**2)*ln(x)**2+(4*x**3+24*x)*ln(x)+x**4+12*x**2+36),x)
[Out]
(5 + 5*exp(3*exp(-exp(5))))/(x**2 + x**2*exp(3*exp(-exp(5))) + (2*x + 2*x*exp(3*exp(-exp(5))))*log(x) + (x**2
+ x**2*exp(3*exp(-exp(5))))*log(x)**2 + exp(3*exp(-exp(5))) + 6)
________________________________________________________________________________________