3.33.75 e4(x3+x4)+e4+x2(2x2+2x32x42x5)+(e4+x2(1+x)+e4(x+x2))log(1+x)+log(3x)(e4+x2x+e4x2+(e4(xx2)+e4+x2(2x22x3))log(1+x))x3+x4+e2x2(x+x2)+ex2(2x2+2x3)dx

Optimal. Leaf size=26 e4(x2+log(3x)log(1+x))ex2+x

________________________________________________________________________________________

Rubi [F]  time = 16.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e4(x3+x4)+e4+x2(2x2+2x32x42x5)+(e4+x2(1+x)+e4(x+x2))log(1+x)+log(3x)(e4+x2x+e4x2+(e4(xx2)+e4+x2(2x22x3))log(1+x))x3+x4+e2x2(x+x2)+ex2(2x2+2x3)dx

Verification is not applicable to the result.

[In]

Int[(E^4*(x^3 + x^4) + E^(4 + x^2)*(2*x^2 + 2*x^3 - 2*x^4 - 2*x^5) + (E^(4 + x^2)*(1 + x) + E^4*(x + x^2))*Log
[1 + x] + Log[3*x]*(E^(4 + x^2)*x + E^4*x^2 + (E^4*(-x - x^2) + E^(4 + x^2)*(-2*x^2 - 2*x^3))*Log[1 + x]))/(x^
3 + x^4 + E^(2*x^2)*(x + x^2) + E^x^2*(2*x^2 + 2*x^3)),x]

[Out]

-(E^4*Log[3*x]*Log[1 + x]*Defer[Int][(E^x^2 + x)^(-2), x]) - E^4*Defer[Int][x^2/(E^x^2 + x)^2, x] + 2*E^4*Log[
3*x]*Log[1 + x]*Defer[Int][x^2/(E^x^2 + x)^2, x] + 2*E^4*Defer[Int][x^4/(E^x^2 + x)^2, x] + E^4*Log[1 + x]*Def
er[Int][1/(x*(E^x^2 + x)), x] + 2*E^4*Defer[Int][x/(E^x^2 + x), x] - 2*E^4*Log[3*x]*Log[1 + x]*Defer[Int][x/(E
^x^2 + x), x] - 2*E^4*Defer[Int][x^3/(E^x^2 + x), x] + E^4*Log[3*x]*Defer[Int][1/((1 + x)*(E^x^2 + x)), x] + E
^4*Log[1 + x]*Defer[Int][Defer[Int][(E^x^2 + x)^(-2), x]/x, x] + E^4*Log[3*x]*Defer[Int][Defer[Int][(E^x^2 + x
)^(-2), x]/(1 + x), x] - 2*E^4*Log[1 + x]*Defer[Int][Defer[Int][x^2/(E^x^2 + x)^2, x]/x, x] - 2*E^4*Log[3*x]*D
efer[Int][Defer[Int][x^2/(E^x^2 + x)^2, x]/(1 + x), x] + 2*E^4*Log[1 + x]*Defer[Int][Defer[Int][x/(E^x^2 + x),
 x]/x, x] + 2*E^4*Log[3*x]*Defer[Int][Defer[Int][x/(E^x^2 + x), x]/(1 + x), x] - E^4*Defer[Int][Defer[Int][1/(
(1 + x)*(E^x^2 + x)), x]/x, x] - E^4*Defer[Int][Defer[Int][(E^x^2*x + x^2)^(-1), x]/(1 + x), x] - E^4*Defer[In
t][Defer[Int][Defer[Int][(E^x^2 + x)^(-2), x]/x, x]/(1 + x), x] - E^4*Defer[Int][Defer[Int][Defer[Int][(E^x^2
+ x)^(-2), x]/(1 + x), x]/x, x] + 2*E^4*Defer[Int][Defer[Int][Defer[Int][x^2/(E^x^2 + x)^2, x]/x, x]/(1 + x),
x] + 2*E^4*Defer[Int][Defer[Int][Defer[Int][x^2/(E^x^2 + x)^2, x]/(1 + x), x]/x, x] - 2*E^4*Defer[Int][Defer[I
nt][Defer[Int][x/(E^x^2 + x), x]/x, x]/(1 + x), x] - 2*E^4*Defer[Int][Defer[Int][Defer[Int][x/(E^x^2 + x), x]/
(1 + x), x]/x, x]

Rubi steps

integral=e4(((1+x)(x2(x+2ex2(1+x2))(ex2+x)log(1+x)))xlog(3x)(ex2x+(1+x)(1+2ex2x)log(1+x)))x(1+x)(ex2+x)2dx=e4((1+x)(x2(x+2ex2(1+x2))(ex2+x)log(1+x)))xlog(3x)(ex2x+(1+x)(1+2ex2x)log(1+x))x(1+x)(ex2+x)2dx=e4((1+2x2)(x2+log(3x)log(1+x))(ex2+x)22x22x3+2x4+2x5xlog(3x)log(1+x)xlog(1+x)+2x2log(3x)log(1+x)+2x3log(3x)log(1+x)x(1+x)(ex2+x))dx=e4(1+2x2)(x2+log(3x)log(1+x))(ex2+x)2dxe42x22x3+2x4+2x5xlog(3x)log(1+x)xlog(1+x)+2x2log(3x)log(1+x)+2x3log(3x)log(1+x)x(1+x)(ex2+x)dx=(e4(1+x)(2x2(1+x2)log(1+x))+xlog(3x)(1+2x(1+x)log(1+x))x(1+x)(ex2+x)dx)+e4(x2+log(3x)log(1+x)(ex2+x)2+2x2(x2+log(3x)log(1+x))(ex2+x)2)dx=(e4x2+log(3x)log(1+x)(ex2+x)2dx)e4(2x22x3+2x4+2x5xlog(3x)log(1+x)xlog(1+x)+2x2log(3x)log(1+x)+2x3log(3x)log(1+x)x(ex2+x)2x22x3+2x4+2x5xlog(3x)log(1+x)xlog(1+x)+2x2log(3x)log(1+x)+2x3log(3x)log(1+x)(1+x)(ex2+x))dx+(2e4)x2(x2+log(3x)log(1+x))(ex2+x)2dx=(e42x22x3+2x4+2x5xlog(3x)log(1+x)xlog(1+x)+2x2log(3x)log(1+x)+2x3log(3x)log(1+x)x(ex2+x)dx)+e42x22x3+2x4+2x5xlog(3x)log(1+x)xlog(1+x)+2x2log(3x)log(1+x)+2x3log(3x)log(1+x)(1+x)(ex2+x)dxe4(x2(ex2+x)2+log(3x)log(1+x)(ex2+x)2)dx+(2e4)(x4(ex2+x)2+x2log(3x)log(1+x)(ex2+x)2)dx=(e4x2(ex2+x)2dx)e4log(3x)log(1+x)(ex2+x)2dxe4(1+x)(2x2(1+x2)log(1+x))+xlog(3x)(1+2x(1+x)log(1+x))x(ex2+x)dx+e4(1+x)(2x2(1+x2)log(1+x))+xlog(3x)(1+2x(1+x)log(1+x))(1+x)(ex2+x)dx+(2e4)x4(ex2+x)2dx+(2e4)x2log(3x)log(1+x)(ex2+x)2dx=(e4x2(ex2+x)2dx)e4(2xex2+x2x2ex2+x+2x3ex2+x+2x4ex2+xlog(3x)ex2+xlog(1+x)ex2+xlog(1+x)x(ex2+x)+2xlog(3x)log(1+x)ex2+x+2x2log(3x)log(1+x)ex2+x)dx+e4(2x2(1+x)(ex2+x)2x3(1+x)(ex2+x)+2x4(1+x)(ex2+x)+2x5(1+x)(ex2+x)xlog(3x)(1+x)(ex2+x)log(1+x)(1+x)(ex2+x)xlog(1+x)(1+x)(ex2+x)+2x2log(3x)log(1+x)(1+x)(ex2+x)+2x3log(3x)log(1+x)(1+x)(ex2+x))dx+e4log(3x)1(ex2+x)2dx1+xdx+e4log(1+x)1(ex2+x)2dxxdx+(2e4)x4(ex2+x)2dx(2e4)log(3x)x2(ex2+x)2dx1+xdx(2e4)log(1+x)x2(ex2+x)2dxxdx(e4log(3x)log(1+x))1(ex2+x)2dx+(2e4log(3x)log(1+x))x2(ex2+x)2dx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [A]  time = 0.15, size = 26, normalized size = 1.00 e4(x2+log(3x)log(1+x))ex2+x

Antiderivative was successfully verified.

[In]

Integrate[(E^4*(x^3 + x^4) + E^(4 + x^2)*(2*x^2 + 2*x^3 - 2*x^4 - 2*x^5) + (E^(4 + x^2)*(1 + x) + E^4*(x + x^2
))*Log[1 + x] + Log[3*x]*(E^(4 + x^2)*x + E^4*x^2 + (E^4*(-x - x^2) + E^(4 + x^2)*(-2*x^2 - 2*x^3))*Log[1 + x]
))/(x^3 + x^4 + E^(2*x^2)*(x + x^2) + E^x^2*(2*x^2 + 2*x^3)),x]

[Out]

(E^4*(x^2 + Log[3*x]*Log[1 + x]))/(E^x^2 + x)

________________________________________________________________________________________

fricas [A]  time = 0.90, size = 32, normalized size = 1.23 x2e8+e8log(3x)log(x+1)xe4+e(x2+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-2*x^3-2*x^2)*exp(4)*exp(x^2)+(-x^2-x)*exp(4))*log(x+1)+x*exp(4)*exp(x^2)+x^2*exp(4))*log(3*x)+(
(x+1)*exp(4)*exp(x^2)+(x^2+x)*exp(4))*log(x+1)+(-2*x^5-2*x^4+2*x^3+2*x^2)*exp(4)*exp(x^2)+(x^4+x^3)*exp(4))/((
x^2+x)*exp(x^2)^2+(2*x^3+2*x^2)*exp(x^2)+x^4+x^3),x, algorithm="fricas")

[Out]

(x^2*e^8 + e^8*log(3*x)*log(x + 1))/(x*e^4 + e^(x^2 + 4))

________________________________________________________________________________________

giac [A]  time = 0.25, size = 34, normalized size = 1.31 x2e4+e4log(3)log(x+1)+e4log(x+1)log(x)x+e(x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-2*x^3-2*x^2)*exp(4)*exp(x^2)+(-x^2-x)*exp(4))*log(x+1)+x*exp(4)*exp(x^2)+x^2*exp(4))*log(3*x)+(
(x+1)*exp(4)*exp(x^2)+(x^2+x)*exp(4))*log(x+1)+(-2*x^5-2*x^4+2*x^3+2*x^2)*exp(4)*exp(x^2)+(x^4+x^3)*exp(4))/((
x^2+x)*exp(x^2)^2+(2*x^3+2*x^2)*exp(x^2)+x^4+x^3),x, algorithm="giac")

[Out]

(x^2*e^4 + e^4*log(3)*log(x + 1) + e^4*log(x + 1)*log(x))/(x + e^(x^2))

________________________________________________________________________________________

maple [A]  time = 0.05, size = 35, normalized size = 1.35




method result size



risch e4ln(3x)ln(x+1)ex2+x+x2e4ex2+x 35



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((((-2*x^3-2*x^2)*exp(4)*exp(x^2)+(-x^2-x)*exp(4))*ln(x+1)+x*exp(4)*exp(x^2)+x^2*exp(4))*ln(3*x)+((x+1)*ex
p(4)*exp(x^2)+(x^2+x)*exp(4))*ln(x+1)+(-2*x^5-2*x^4+2*x^3+2*x^2)*exp(4)*exp(x^2)+(x^4+x^3)*exp(4))/((x^2+x)*ex
p(x^2)^2+(2*x^3+2*x^2)*exp(x^2)+x^4+x^3),x,method=_RETURNVERBOSE)

[Out]

exp(4)/(exp(x^2)+x)*ln(3*x)*ln(x+1)+x^2*exp(4)/(exp(x^2)+x)

________________________________________________________________________________________

maxima [A]  time = 0.85, size = 32, normalized size = 1.23 x2e4+(e4log(3)+e4log(x))log(x+1)x+e(x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-2*x^3-2*x^2)*exp(4)*exp(x^2)+(-x^2-x)*exp(4))*log(x+1)+x*exp(4)*exp(x^2)+x^2*exp(4))*log(3*x)+(
(x+1)*exp(4)*exp(x^2)+(x^2+x)*exp(4))*log(x+1)+(-2*x^5-2*x^4+2*x^3+2*x^2)*exp(4)*exp(x^2)+(x^4+x^3)*exp(4))/((
x^2+x)*exp(x^2)^2+(2*x^3+2*x^2)*exp(x^2)+x^4+x^3),x, algorithm="maxima")

[Out]

(x^2*e^4 + (e^4*log(3) + e^4*log(x))*log(x + 1))/(x + e^(x^2))

________________________________________________________________________________________

mupad [B]  time = 2.33, size = 24, normalized size = 0.92 e4(x2+ln(3x)ln(x+1))x+ex2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(x + 1)*(exp(4)*(x + x^2) + exp(x^2)*exp(4)*(x + 1)) + log(3*x)*(x^2*exp(4) - log(x + 1)*(exp(4)*(x +
x^2) + exp(x^2)*exp(4)*(2*x^2 + 2*x^3)) + x*exp(x^2)*exp(4)) + exp(4)*(x^3 + x^4) + exp(x^2)*exp(4)*(2*x^2 + 2
*x^3 - 2*x^4 - 2*x^5))/(exp(x^2)*(2*x^2 + 2*x^3) + exp(2*x^2)*(x + x^2) + x^3 + x^4),x)

[Out]

(exp(4)*(x^2 + log(3*x)*log(x + 1)))/(x + exp(x^2))

________________________________________________________________________________________

sympy [A]  time = 0.76, size = 26, normalized size = 1.00 x2e4+e4log(3x)log(x+1)x+ex2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((-2*x**3-2*x**2)*exp(4)*exp(x**2)+(-x**2-x)*exp(4))*ln(x+1)+x*exp(4)*exp(x**2)+x**2*exp(4))*ln(3*
x)+((x+1)*exp(4)*exp(x**2)+(x**2+x)*exp(4))*ln(x+1)+(-2*x**5-2*x**4+2*x**3+2*x**2)*exp(4)*exp(x**2)+(x**4+x**3
)*exp(4))/((x**2+x)*exp(x**2)**2+(2*x**3+2*x**2)*exp(x**2)+x**4+x**3),x)

[Out]

(x**2*exp(4) + exp(4)*log(3*x)*log(x + 1))/(x + exp(x**2))

________________________________________________________________________________________