3.33.75
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [F] time = 16.86, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^4*(x^3 + x^4) + E^(4 + x^2)*(2*x^2 + 2*x^3 - 2*x^4 - 2*x^5) + (E^(4 + x^2)*(1 + x) + E^4*(x + x^2))*Log
[1 + x] + Log[3*x]*(E^(4 + x^2)*x + E^4*x^2 + (E^4*(-x - x^2) + E^(4 + x^2)*(-2*x^2 - 2*x^3))*Log[1 + x]))/(x^
3 + x^4 + E^(2*x^2)*(x + x^2) + E^x^2*(2*x^2 + 2*x^3)),x]
[Out]
-(E^4*Log[3*x]*Log[1 + x]*Defer[Int][(E^x^2 + x)^(-2), x]) - E^4*Defer[Int][x^2/(E^x^2 + x)^2, x] + 2*E^4*Log[
3*x]*Log[1 + x]*Defer[Int][x^2/(E^x^2 + x)^2, x] + 2*E^4*Defer[Int][x^4/(E^x^2 + x)^2, x] + E^4*Log[1 + x]*Def
er[Int][1/(x*(E^x^2 + x)), x] + 2*E^4*Defer[Int][x/(E^x^2 + x), x] - 2*E^4*Log[3*x]*Log[1 + x]*Defer[Int][x/(E
^x^2 + x), x] - 2*E^4*Defer[Int][x^3/(E^x^2 + x), x] + E^4*Log[3*x]*Defer[Int][1/((1 + x)*(E^x^2 + x)), x] + E
^4*Log[1 + x]*Defer[Int][Defer[Int][(E^x^2 + x)^(-2), x]/x, x] + E^4*Log[3*x]*Defer[Int][Defer[Int][(E^x^2 + x
)^(-2), x]/(1 + x), x] - 2*E^4*Log[1 + x]*Defer[Int][Defer[Int][x^2/(E^x^2 + x)^2, x]/x, x] - 2*E^4*Log[3*x]*D
efer[Int][Defer[Int][x^2/(E^x^2 + x)^2, x]/(1 + x), x] + 2*E^4*Log[1 + x]*Defer[Int][Defer[Int][x/(E^x^2 + x),
x]/x, x] + 2*E^4*Log[3*x]*Defer[Int][Defer[Int][x/(E^x^2 + x), x]/(1 + x), x] - E^4*Defer[Int][Defer[Int][1/(
(1 + x)*(E^x^2 + x)), x]/x, x] - E^4*Defer[Int][Defer[Int][(E^x^2*x + x^2)^(-1), x]/(1 + x), x] - E^4*Defer[In
t][Defer[Int][Defer[Int][(E^x^2 + x)^(-2), x]/x, x]/(1 + x), x] - E^4*Defer[Int][Defer[Int][Defer[Int][(E^x^2
+ x)^(-2), x]/(1 + x), x]/x, x] + 2*E^4*Defer[Int][Defer[Int][Defer[Int][x^2/(E^x^2 + x)^2, x]/x, x]/(1 + x),
x] + 2*E^4*Defer[Int][Defer[Int][Defer[Int][x^2/(E^x^2 + x)^2, x]/(1 + x), x]/x, x] - 2*E^4*Defer[Int][Defer[I
nt][Defer[Int][x/(E^x^2 + x), x]/x, x]/(1 + x), x] - 2*E^4*Defer[Int][Defer[Int][Defer[Int][x/(E^x^2 + x), x]/
(1 + x), x]/x, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 26, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[(E^4*(x^3 + x^4) + E^(4 + x^2)*(2*x^2 + 2*x^3 - 2*x^4 - 2*x^5) + (E^(4 + x^2)*(1 + x) + E^4*(x + x^2
))*Log[1 + x] + Log[3*x]*(E^(4 + x^2)*x + E^4*x^2 + (E^4*(-x - x^2) + E^(4 + x^2)*(-2*x^2 - 2*x^3))*Log[1 + x]
))/(x^3 + x^4 + E^(2*x^2)*(x + x^2) + E^x^2*(2*x^2 + 2*x^3)),x]
[Out]
(E^4*(x^2 + Log[3*x]*Log[1 + x]))/(E^x^2 + x)
________________________________________________________________________________________
fricas [A] time = 0.90, size = 32, normalized size = 1.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((-2*x^3-2*x^2)*exp(4)*exp(x^2)+(-x^2-x)*exp(4))*log(x+1)+x*exp(4)*exp(x^2)+x^2*exp(4))*log(3*x)+(
(x+1)*exp(4)*exp(x^2)+(x^2+x)*exp(4))*log(x+1)+(-2*x^5-2*x^4+2*x^3+2*x^2)*exp(4)*exp(x^2)+(x^4+x^3)*exp(4))/((
x^2+x)*exp(x^2)^2+(2*x^3+2*x^2)*exp(x^2)+x^4+x^3),x, algorithm="fricas")
[Out]
(x^2*e^8 + e^8*log(3*x)*log(x + 1))/(x*e^4 + e^(x^2 + 4))
________________________________________________________________________________________
giac [A] time = 0.25, size = 34, normalized size = 1.31
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((-2*x^3-2*x^2)*exp(4)*exp(x^2)+(-x^2-x)*exp(4))*log(x+1)+x*exp(4)*exp(x^2)+x^2*exp(4))*log(3*x)+(
(x+1)*exp(4)*exp(x^2)+(x^2+x)*exp(4))*log(x+1)+(-2*x^5-2*x^4+2*x^3+2*x^2)*exp(4)*exp(x^2)+(x^4+x^3)*exp(4))/((
x^2+x)*exp(x^2)^2+(2*x^3+2*x^2)*exp(x^2)+x^4+x^3),x, algorithm="giac")
[Out]
(x^2*e^4 + e^4*log(3)*log(x + 1) + e^4*log(x + 1)*log(x))/(x + e^(x^2))
________________________________________________________________________________________
maple [A] time = 0.05, size = 35, normalized size = 1.35
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((((-2*x^3-2*x^2)*exp(4)*exp(x^2)+(-x^2-x)*exp(4))*ln(x+1)+x*exp(4)*exp(x^2)+x^2*exp(4))*ln(3*x)+((x+1)*ex
p(4)*exp(x^2)+(x^2+x)*exp(4))*ln(x+1)+(-2*x^5-2*x^4+2*x^3+2*x^2)*exp(4)*exp(x^2)+(x^4+x^3)*exp(4))/((x^2+x)*ex
p(x^2)^2+(2*x^3+2*x^2)*exp(x^2)+x^4+x^3),x,method=_RETURNVERBOSE)
[Out]
exp(4)/(exp(x^2)+x)*ln(3*x)*ln(x+1)+x^2*exp(4)/(exp(x^2)+x)
________________________________________________________________________________________
maxima [A] time = 0.85, size = 32, normalized size = 1.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((-2*x^3-2*x^2)*exp(4)*exp(x^2)+(-x^2-x)*exp(4))*log(x+1)+x*exp(4)*exp(x^2)+x^2*exp(4))*log(3*x)+(
(x+1)*exp(4)*exp(x^2)+(x^2+x)*exp(4))*log(x+1)+(-2*x^5-2*x^4+2*x^3+2*x^2)*exp(4)*exp(x^2)+(x^4+x^3)*exp(4))/((
x^2+x)*exp(x^2)^2+(2*x^3+2*x^2)*exp(x^2)+x^4+x^3),x, algorithm="maxima")
[Out]
(x^2*e^4 + (e^4*log(3) + e^4*log(x))*log(x + 1))/(x + e^(x^2))
________________________________________________________________________________________
mupad [B] time = 2.33, size = 24, normalized size = 0.92
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(x + 1)*(exp(4)*(x + x^2) + exp(x^2)*exp(4)*(x + 1)) + log(3*x)*(x^2*exp(4) - log(x + 1)*(exp(4)*(x +
x^2) + exp(x^2)*exp(4)*(2*x^2 + 2*x^3)) + x*exp(x^2)*exp(4)) + exp(4)*(x^3 + x^4) + exp(x^2)*exp(4)*(2*x^2 + 2
*x^3 - 2*x^4 - 2*x^5))/(exp(x^2)*(2*x^2 + 2*x^3) + exp(2*x^2)*(x + x^2) + x^3 + x^4),x)
[Out]
(exp(4)*(x^2 + log(3*x)*log(x + 1)))/(x + exp(x^2))
________________________________________________________________________________________
sympy [A] time = 0.76, size = 26, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((-2*x**3-2*x**2)*exp(4)*exp(x**2)+(-x**2-x)*exp(4))*ln(x+1)+x*exp(4)*exp(x**2)+x**2*exp(4))*ln(3*
x)+((x+1)*exp(4)*exp(x**2)+(x**2+x)*exp(4))*ln(x+1)+(-2*x**5-2*x**4+2*x**3+2*x**2)*exp(4)*exp(x**2)+(x**4+x**3
)*exp(4))/((x**2+x)*exp(x**2)**2+(2*x**3+2*x**2)*exp(x**2)+x**4+x**3),x)
[Out]
(x**2*exp(4) + exp(4)*log(3*x)*log(x + 1))/(x + exp(x**2))
________________________________________________________________________________________