3.33.84 e4x4x5+e4x4(4816x)log(6+2x)log(log(6+2x))(3x5+x6)log(6+2x)log2(log(6+2x))dx

Optimal. Leaf size=17 e4x4log(log(6+2x))

________________________________________________________________________________________

Rubi [F]  time = 12.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e4x4x5+e4x4(4816x)log(6+2x)log(log(6+2x))(3x5+x6)log(6+2x)log2(log(6+2x))dx

Verification is not applicable to the result.

[In]

Int[(-(E^(4/x^4)*x^5) + E^(4/x^4)*(-48 - 16*x)*Log[6 + 2*x]*Log[Log[6 + 2*x]])/((3*x^5 + x^6)*Log[6 + 2*x]*Log
[Log[6 + 2*x]]^2),x]

[Out]

Defer[Int][E^(4/x^4)/((-3 - x)*Log[6 + 2*x]*Log[Log[6 + 2*x]]^2), x] + (16*Defer[Int][E^(4/x^4)/((-3 - x)*Log[
Log[6 + 2*x]]), x])/81 - 16*Defer[Int][E^(4/x^4)/(x^5*Log[Log[6 + 2*x]]), x] + (16*Defer[Int][E^(4/x^4)/((3 +
x)*Log[Log[6 + 2*x]]), x])/81

Rubi steps

integral=e4x4x5+e4x4(4816x)log(6+2x)log(log(6+2x))x5(3+x)log(6+2x)log2(log(6+2x))dx=(e4x4(x548log(2(3+x))log(log(2(3+x)))16xlog(2(3+x))log(log(2(3+x))))3x5log(6+2x)log2(log(6+2x))+e4x4(x548log(2(3+x))log(log(2(3+x)))16xlog(2(3+x))log(log(2(3+x))))27x3log(6+2x)log2(log(6+2x))+e4x4(x548log(2(3+x))log(log(2(3+x)))16xlog(2(3+x))log(log(2(3+x))))243xlog(6+2x)log2(log(6+2x))+e4x4(x5+48log(2(3+x))log(log(2(3+x)))+16xlog(2(3+x))log(log(2(3+x))))9x4log(6+2x)log2(log(6+2x))+e4x4(x5+48log(2(3+x))log(log(2(3+x)))+16xlog(2(3+x))log(log(2(3+x))))81x2log(6+2x)log2(log(6+2x))+e4x4(x5+48log(2(3+x))log(log(2(3+x)))+16xlog(2(3+x))log(log(2(3+x))))243(3+x)log(6+2x)log2(log(6+2x)))dx=1243e4x4(x548log(2(3+x))log(log(2(3+x)))16xlog(2(3+x))log(log(2(3+x))))xlog(6+2x)log2(log(6+2x))dx+1243e4x4(x5+48log(2(3+x))log(log(2(3+x)))+16xlog(2(3+x))log(log(2(3+x))))(3+x)log(6+2x)log2(log(6+2x))dx+181e4x4(x5+48log(2(3+x))log(log(2(3+x)))+16xlog(2(3+x))log(log(2(3+x))))x2log(6+2x)log2(log(6+2x))dx+127e4x4(x548log(2(3+x))log(log(2(3+x)))16xlog(2(3+x))log(log(2(3+x))))x3log(6+2x)log2(log(6+2x))dx+19e4x4(x5+48log(2(3+x))log(log(2(3+x)))+16xlog(2(3+x))log(log(2(3+x))))x4log(6+2x)log2(log(6+2x))dx+13e4x4(x548log(2(3+x))log(log(2(3+x)))16xlog(2(3+x))log(log(2(3+x))))x5log(6+2x)log2(log(6+2x))dx=1243e4x4(x516(3+x)log(2(3+x))log(log(2(3+x))))xlog(6+2x)log2(log(6+2x))dx+1243e4x4(x5+16(3+x)log(2(3+x))log(log(2(3+x))))(3+x)log(6+2x)log2(log(6+2x))dx+181e4x4(x5+16(3+x)log(2(3+x))log(log(2(3+x))))x2log(6+2x)log2(log(6+2x))dx+127e4x4(x516(3+x)log(2(3+x))log(log(2(3+x))))x3log(6+2x)log2(log(6+2x))dx+19e4x4(x5+16(3+x)log(2(3+x))log(log(2(3+x))))x4log(6+2x)log2(log(6+2x))dx+13e4x4(x516(3+x)log(2(3+x))log(log(2(3+x))))x5log(6+2x)log2(log(6+2x))dx=1243(e4x4x4log(6+2x)log2(log(6+2x))16e4x4log(log(6+2x))48e4x4xlog(log(6+2x)))dx+1243(e4x4x5(3+x)log(6+2x)log2(log(6+2x))+48e4x4(3+x)log(log(6+2x))+16e4x4x(3+x)log(log(6+2x)))dx+181(e4x4x3log(6+2x)log2(log(6+2x))+48e4x4x2log(log(6+2x))+16e4x4xlog(log(6+2x)))dx+127(e4x4x2log(6+2x)log2(log(6+2x))48e4x4x3log(log(6+2x))16e4x4x2log(log(6+2x)))dx+19(e4x4xlog(6+2x)log2(log(6+2x))+48e4x4x4log(log(6+2x))+16e4x4x3log(log(6+2x)))dx+13(e4x4log(6+2x)log2(log(6+2x))48e4x4x5log(log(6+2x))16e4x4x4log(log(6+2x)))dx=(1243e4x4x4log(6+2x)log2(log(6+2x))dx)+1243e4x4x5(3+x)log(6+2x)log2(log(6+2x))dx+181e4x4x3log(6+2x)log2(log(6+2x))dx127e4x4x2log(6+2x)log2(log(6+2x))dx16243e4x4log(log(6+2x))dx+16243e4x4x(3+x)log(log(6+2x))dx+19e4x4xlog(6+2x)log2(log(6+2x))dx+1681e4x4(3+x)log(log(6+2x))dx13e4x4log(6+2x)log2(log(6+2x))dx16e4x4x5log(log(6+2x))dx=1243(81e4x4log(6+2x)log2(log(6+2x))+243e4x4(3x)log(6+2x)log2(log(6+2x))27e4x4xlog(6+2x)log2(log(6+2x))+9e4x4x2log(6+2x)log2(log(6+2x))3e4x4x3log(6+2x)log2(log(6+2x))+e4x4x4log(6+2x)log2(log(6+2x)))dx1243e4x4x4log(6+2x)log2(log(6+2x))dx+181e4x4x3log(6+2x)log2(log(6+2x))dx127e4x4x2log(6+2x)log2(log(6+2x))dx+16243(e4x4log(log(6+2x))+3e4x4(3x)log(log(6+2x)))dx16243e4x4log(log(6+2x))dx+19e4x4xlog(6+2x)log2(log(6+2x))dx+1681e4x4(3+x)log(log(6+2x))dx13e4x4log(6+2x)log2(log(6+2x))dx16e4x4x5log(log(6+2x))dx=1681e4x4(3x)log(log(6+2x))dx+1681e4x4(3+x)log(log(6+2x))dx16e4x4x5log(log(6+2x))dx+e4x4(3x)log(6+2x)log2(log(6+2x))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 17, normalized size = 1.00 e4x4log(log(2(3+x)))

Antiderivative was successfully verified.

[In]

Integrate[(-(E^(4/x^4)*x^5) + E^(4/x^4)*(-48 - 16*x)*Log[6 + 2*x]*Log[Log[6 + 2*x]])/((3*x^5 + x^6)*Log[6 + 2*
x]*Log[Log[6 + 2*x]]^2),x]

[Out]

E^(4/x^4)/Log[Log[2*(3 + x)]]

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 16, normalized size = 0.94 e(4x4)log(log(2x+6))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x-48)*exp(2/x^4)^2*log(2*x+6)*log(log(2*x+6))-x^5*exp(2/x^4)^2)/(x^6+3*x^5)/log(2*x+6)/log(log
(2*x+6))^2,x, algorithm="fricas")

[Out]

e^(4/x^4)/log(log(2*x + 6))

________________________________________________________________________________________

giac [A]  time = 0.26, size = 16, normalized size = 0.94 e(4x4)log(log(2x+6))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x-48)*exp(2/x^4)^2*log(2*x+6)*log(log(2*x+6))-x^5*exp(2/x^4)^2)/(x^6+3*x^5)/log(2*x+6)/log(log
(2*x+6))^2,x, algorithm="giac")

[Out]

e^(4/x^4)/log(log(2*x + 6))

________________________________________________________________________________________

maple [A]  time = 0.45, size = 17, normalized size = 1.00




method result size



risch e4x4ln(ln(2x+6)) 17



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-16*x-48)*exp(2/x^4)^2*ln(2*x+6)*ln(ln(2*x+6))-x^5*exp(2/x^4)^2)/(x^6+3*x^5)/ln(2*x+6)/ln(ln(2*x+6))^2,x
,method=_RETURNVERBOSE)

[Out]

exp(4/x^4)/ln(ln(2*x+6))

________________________________________________________________________________________

maxima [A]  time = 0.57, size = 17, normalized size = 1.00 e(4x4)log(log(2)+log(x+3))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x-48)*exp(2/x^4)^2*log(2*x+6)*log(log(2*x+6))-x^5*exp(2/x^4)^2)/(x^6+3*x^5)/log(2*x+6)/log(log
(2*x+6))^2,x, algorithm="maxima")

[Out]

e^(4/x^4)/log(log(2) + log(x + 3))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.06 x5e4x4+ln(ln(2x+6))e4x4ln(2x+6)(16x+48)ln(ln(2x+6))2ln(2x+6)(x6+3x5)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^5*exp(4/x^4) + log(log(2*x + 6))*exp(4/x^4)*log(2*x + 6)*(16*x + 48))/(log(log(2*x + 6))^2*log(2*x + 6
)*(3*x^5 + x^6)),x)

[Out]

int(-(x^5*exp(4/x^4) + log(log(2*x + 6))*exp(4/x^4)*log(2*x + 6)*(16*x + 48))/(log(log(2*x + 6))^2*log(2*x + 6
)*(3*x^5 + x^6)), x)

________________________________________________________________________________________

sympy [A]  time = 0.53, size = 14, normalized size = 0.82 e4x4log(log(2x+6))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-16*x-48)*exp(2/x**4)**2*ln(2*x+6)*ln(ln(2*x+6))-x**5*exp(2/x**4)**2)/(x**6+3*x**5)/ln(2*x+6)/ln(l
n(2*x+6))**2,x)

[Out]

exp(4/x**4)/log(log(2*x + 6))

________________________________________________________________________________________