Optimal. Leaf size=22 \[ -\frac {1}{2} e^{e^3-x}+4 e^x-2 x \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 2194} \begin {gather*} -2 x-\frac {e^{e^3-x}}{2}+4 e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (-4+e^{e^3-x}+8 e^x\right ) \, dx\\ &=-2 x+\frac {1}{2} \int e^{e^3-x} \, dx+4 \int e^x \, dx\\ &=-\frac {1}{2} e^{e^3-x}+4 e^x-2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 1.09 \begin {gather*} \frac {1}{2} \left (-e^{e^3-x}+8 e^x-4 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 34, normalized size = 1.55 \begin {gather*} -\frac {1}{2} \, {\left (4 \, x e^{\left (-x + e^{3}\right )} + e^{\left (-2 \, x + 2 \, e^{3}\right )} - 8 \, e^{\left (e^{3}\right )}\right )} e^{\left (x - e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 17, normalized size = 0.77 \begin {gather*} -2 \, x + 4 \, e^{x} - \frac {1}{2} \, e^{\left (-x + e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 18, normalized size = 0.82
method | result | size |
default | \(-\frac {{\mathrm e}^{-x +{\mathrm e}^{3}}}{2}-2 x +4 \,{\mathrm e}^{x}\) | \(18\) |
risch | \(-\frac {{\mathrm e}^{-x +{\mathrm e}^{3}}}{2}-2 x +4 \,{\mathrm e}^{x}\) | \(18\) |
norman | \(\left (4 \,{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x -\frac {{\mathrm e}^{{\mathrm e}^{3}}}{2}\right ) {\mathrm e}^{-x}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.88, size = 17, normalized size = 0.77 \begin {gather*} -2 \, x + 4 \, e^{x} - \frac {1}{2} \, e^{\left (-x + e^{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.90, size = 17, normalized size = 0.77 \begin {gather*} 4\,{\mathrm {e}}^x-2\,x-\frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\mathrm {e}}^3}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.77 \begin {gather*} - 2 x + 4 e^{x} - \frac {e^{- x} e^{e^{3}}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________