3.33.85 12(4+ee3x+8ex)dx

Optimal. Leaf size=22 12ee3x+4ex2x

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 2, integrand size = 20, number of rulesintegrand size = 0.100, Rules used = {12, 2194} 2xee3x2+4ex

Antiderivative was successfully verified.

[In]

Int[(-4 + E^(E^3 - x) + 8*E^x)/2,x]

[Out]

-1/2*E^(E^3 - x) + 4*E^x - 2*x

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=12(4+ee3x+8ex)dx=2x+12ee3xdx+4exdx=12ee3x+4ex2x

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 24, normalized size = 1.09 12(ee3x+8ex4x)

Antiderivative was successfully verified.

[In]

Integrate[(-4 + E^(E^3 - x) + 8*E^x)/2,x]

[Out]

(-E^(E^3 - x) + 8*E^x - 4*x)/2

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 34, normalized size = 1.55 12(4xe(x+e3)+e(2x+2e3)8e(e3))e(xe3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*exp(-x+exp(3))+4*exp(x)-2,x, algorithm="fricas")

[Out]

-1/2*(4*x*e^(-x + e^3) + e^(-2*x + 2*e^3) - 8*e^(e^3))*e^(x - e^3)

________________________________________________________________________________________

giac [A]  time = 0.19, size = 17, normalized size = 0.77 2x+4ex12e(x+e3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*exp(-x+exp(3))+4*exp(x)-2,x, algorithm="giac")

[Out]

-2*x + 4*e^x - 1/2*e^(-x + e^3)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 18, normalized size = 0.82




method result size



default ex+e322x+4ex 18
risch ex+e322x+4ex 18
norman (4e2x2exxee32)ex 23



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/2*exp(-x+exp(3))+4*exp(x)-2,x,method=_RETURNVERBOSE)

[Out]

-1/2*exp(-x+exp(3))-2*x+4*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.88, size = 17, normalized size = 0.77 2x+4ex12e(x+e3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*exp(-x+exp(3))+4*exp(x)-2,x, algorithm="maxima")

[Out]

-2*x + 4*e^x - 1/2*e^(-x + e^3)

________________________________________________________________________________________

mupad [B]  time = 1.90, size = 17, normalized size = 0.77 4ex2xexee32

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(exp(3) - x)/2 + 4*exp(x) - 2,x)

[Out]

4*exp(x) - 2*x - (exp(-x)*exp(exp(3)))/2

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 17, normalized size = 0.77 2x+4exexee32

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*exp(-x+exp(3))+4*exp(x)-2,x)

[Out]

-2*x + 4*exp(x) - exp(-x)*exp(exp(3))/2

________________________________________________________________________________________