Optimal. Leaf size=35 \[ 3^{3+\frac {4 \left (\frac {3}{x}-e^{-x} x^2-\log \left (\frac {4}{x}\right )\right )}{3 x}} \]
________________________________________________________________________________________
Rubi [F] time = 8.89, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (-x+\frac {e^{-x} \left (-4 x^3 \log (3)+e^x \left (12+9 x^2\right ) \log (3)-4 e^x x \log (3) \log \left (\frac {4}{x}\right )\right )}{3 x^2}\right ) \left (e^x (-24+4 x) \log (3)+\left (-4 x^3+4 x^4\right ) \log (3)+4 e^x x \log (3) \log \left (\frac {4}{x}\right )\right )}{3 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {\exp \left (-x+\frac {e^{-x} \left (-4 x^3 \log (3)+e^x \left (12+9 x^2\right ) \log (3)-4 e^x x \log (3) \log \left (\frac {4}{x}\right )\right )}{3 x^2}\right ) \left (e^x (-24+4 x) \log (3)+\left (-4 x^3+4 x^4\right ) \log (3)+4 e^x x \log (3) \log \left (\frac {4}{x}\right )\right )}{x^3} \, dx\\ &=\frac {1}{3} \int \frac {4\ 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \log (3) \left (e^x (-6+x)+(-1+x) x^3+e^x x \log \left (\frac {4}{x}\right )\right )}{x^3} \, dx\\ &=\frac {1}{3} (4 \log (3)) \int \frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \left (e^x (-6+x)+(-1+x) x^3+e^x x \log \left (\frac {4}{x}\right )\right )}{x^3} \, dx\\ &=\frac {1}{3} (4 \log (3)) \int \left (-3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}}+3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} x+\frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \left (-6+x+x \log \left (\frac {4}{x}\right )\right )}{x^3}\right ) \, dx\\ &=-\left (\frac {1}{3} (4 \log (3)) \int 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \, dx\right )+\frac {1}{3} (4 \log (3)) \int 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} x \, dx+\frac {1}{3} (4 \log (3)) \int \frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \left (-6+x+x \log \left (\frac {4}{x}\right )\right )}{x^3} \, dx\\ &=-\left (\frac {1}{3} (4 \log (3)) \int 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \, dx\right )+\frac {1}{3} (4 \log (3)) \int 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} x \, dx+\frac {1}{3} (4 \log (3)) \int \left (\frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} (-6+x)}{x^3}+\frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \log \left (\frac {4}{x}\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {1}{3} (4 \log (3)) \int 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \, dx\right )+\frac {1}{3} (4 \log (3)) \int \frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} (-6+x)}{x^3} \, dx+\frac {1}{3} (4 \log (3)) \int 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} x \, dx+\frac {1}{3} (4 \log (3)) \int \frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \log \left (\frac {4}{x}\right )}{x^2} \, dx\\ &=-\left (\frac {1}{3} (4 \log (3)) \int 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \, dx\right )+\frac {1}{3} (4 \log (3)) \int \left (-\frac {2\ 3^{4+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}}}{x^3}+\frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}}}{x^2}\right ) \, dx+\frac {1}{3} (4 \log (3)) \int 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} x \, dx+\frac {1}{3} (4 \log (3)) \int \frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \log \left (\frac {4}{x}\right )}{x^2} \, dx\\ &=-\left (\frac {1}{3} (4 \log (3)) \int 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \, dx\right )+\frac {1}{3} (4 \log (3)) \int \frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}}}{x^2} \, dx+\frac {1}{3} (4 \log (3)) \int 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-x-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} x \, dx+\frac {1}{3} (4 \log (3)) \int \frac {3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}} \log \left (\frac {4}{x}\right )}{x^2} \, dx-\frac {1}{3} (8 \log (3)) \int \frac {3^{4+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}} e^{-\frac {4 \log (3) \log \left (\frac {4}{x}\right )}{3 x}}}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.37, size = 40, normalized size = 1.14 \begin {gather*} \frac {4\ 3^{3+\frac {4}{x^2}-\frac {4 e^{-x} x}{3}-\frac {4 \log \left (\frac {4}{x}\right )}{3 x}} \log (3)}{\log (81)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 52, normalized size = 1.49 \begin {gather*} e^{\left (x - \frac {{\left (4 \, x^{3} \log \relax (3) + 4 \, x e^{x} \log \relax (3) \log \left (\frac {4}{x}\right ) + 3 \, {\left (x^{3} - {\left (3 \, x^{2} + 4\right )} \log \relax (3)\right )} e^{x}\right )} e^{\left (-x\right )}}{3 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (x e^{x} \log \relax (3) \log \left (\frac {4}{x}\right ) + {\left (x - 6\right )} e^{x} \log \relax (3) + {\left (x^{4} - x^{3}\right )} \log \relax (3)\right )} e^{\left (-x - \frac {{\left (4 \, x^{3} \log \relax (3) + 4 \, x e^{x} \log \relax (3) \log \left (\frac {4}{x}\right ) - 3 \, {\left (3 \, x^{2} + 4\right )} e^{x} \log \relax (3)\right )} e^{\left (-x\right )}}{3 \, x^{2}}\right )}}{3 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 1.63, size = 34, normalized size = 0.97
method | result | size |
risch | \(3^{\frac {9 x^{2}+4 x \ln \relax (x )-8 x \ln \relax (2)-4 x^{3} {\mathrm e}^{-x}+12}{3 x^{2}}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.18, size = 38, normalized size = 1.09 \begin {gather*} 27 \, e^{\left (-\frac {4}{3} \, x e^{\left (-x\right )} \log \relax (3) - \frac {8 \, \log \relax (3) \log \relax (2)}{3 \, x} + \frac {4 \, \log \relax (3) \log \relax (x)}{3 \, x} + \frac {4 \, \log \relax (3)}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.68, size = 43, normalized size = 1.23 \begin {gather*} \frac {27\,3^{\frac {4}{x^2}}\,{\mathrm {e}}^{-\frac {4\,\ln \left (\frac {1}{x}\right )\,\ln \relax (3)}{3\,x}}}{2^{\frac {8\,\ln \relax (3)}{3\,x}}\,3^{\frac {4\,x\,{\mathrm {e}}^{-x}}{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 49, normalized size = 1.40 \begin {gather*} e^{\frac {\left (- \frac {4 x^{3} \log {\relax (3 )}}{3} - \frac {4 x e^{x} \log {\relax (3 )} \log {\left (\frac {4}{x} \right )}}{3} + \frac {\left (9 x^{2} + 12\right ) e^{x} \log {\relax (3 )}}{3}\right ) e^{- x}}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________