3.33.89
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [A] time = 0.30, antiderivative size = 35, normalized size of antiderivative = 1.21,
number of steps used = 11, number of rules used = 7, integrand size = 33, = 0.212, Rules used
= {12, 6742, 2199, 2194, 2177, 2178, 2176}
Antiderivative was successfully verified.
[In]
Int[(36 + 36*x - 19*x^2 + 10*E^x*x^2 + x^3)/(5*E^x*x^2),x]
[Out]
18/(5*E^x) - 36/(5*E^x*x) + 2*x - x/(5*E^x)
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2176
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !$UseGamma === True
Rule 2177
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
+ 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && !$UseGamma ===
True
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2194
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]
Rule 2199
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] && !$UseGamma === True
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 24, normalized size = 0.83
Antiderivative was successfully verified.
[In]
Integrate[(36 + 36*x - 19*x^2 + 10*E^x*x^2 + x^3)/(5*E^x*x^2),x]
[Out]
((18 - 36/x - x)/E^x + 10*x)/5
________________________________________________________________________________________
fricas [A] time = 0.55, size = 26, normalized size = 0.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(10*exp(x)*x^2+x^3-19*x^2+36*x+36)/exp(x)/x^2,x, algorithm="fricas")
[Out]
1/5*(10*x^2*e^x - x^2 + 18*x - 36)*e^(-x)/x
________________________________________________________________________________________
giac [A] time = 0.21, size = 32, normalized size = 1.10
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(10*exp(x)*x^2+x^3-19*x^2+36*x+36)/exp(x)/x^2,x, algorithm="giac")
[Out]
-1/5*(x^2*e^(-x) - 10*x^2 - 18*x*e^(-x) + 36*e^(-x))/x
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 0.76
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/5*(10*exp(x)*x^2+x^3-19*x^2+36*x+36)/exp(x)/x^2,x,method=_RETURNVERBOSE)
[Out]
2*x-1/5*(x^2-18*x+36)/x*exp(-x)
________________________________________________________________________________________
maxima [C] time = 0.50, size = 30, normalized size = 1.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(10*exp(x)*x^2+x^3-19*x^2+36*x+36)/exp(x)/x^2,x, algorithm="maxima")
[Out]
-1/5*(x + 1)*e^(-x) + 2*x + 36/5*Ei(-x) + 19/5*e^(-x) - 36/5*gamma(-1, x)
________________________________________________________________________________________
mupad [B] time = 0.09, size = 26, normalized size = 0.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(-x)*((36*x)/5 + 2*x^2*exp(x) - (19*x^2)/5 + x^3/5 + 36/5))/x^2,x)
[Out]
2*x + (18*exp(-x))/5 - (x*exp(-x))/5 - (36*exp(-x))/(5*x)
________________________________________________________________________________________
sympy [A] time = 0.12, size = 17, normalized size = 0.59
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/5*(10*exp(x)*x**2+x**3-19*x**2+36*x+36)/exp(x)/x**2,x)
[Out]
2*x + (-x**2 + 18*x - 36)*exp(-x)/(5*x)
________________________________________________________________________________________