3.33.89 ex(36+36x19x2+10exx2+x3)5x2dx

Optimal. Leaf size=29 5+15ex(6+ex(6+x)2x)+2x

________________________________________________________________________________________

Rubi [A]  time = 0.30, antiderivative size = 35, normalized size of antiderivative = 1.21, number of steps used = 11, number of rules used = 7, integrand size = 33, number of rulesintegrand size = 0.212, Rules used = {12, 6742, 2199, 2194, 2177, 2178, 2176} 15exx+2x+18ex536ex5x

Antiderivative was successfully verified.

[In]

Int[(36 + 36*x - 19*x^2 + 10*E^x*x^2 + x^3)/(5*E^x*x^2),x]

[Out]

18/(5*E^x) - 36/(5*E^x*x) + 2*x - x/(5*E^x)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2177

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[((c + d*x)^(m
 + 1)*(b*F^(g*(e + f*x)))^n)/(d*(m + 1)), x] - Dist[(f*g*n*Log[F])/(d*(m + 1)), Int[(c + d*x)^(m + 1)*(b*F^(g*
(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] &&  !$UseGamma ===
True

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 2199

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> Int[ExpandIntegrand[F^(c*ExpandToSum[v, x]), w*NormalizePo
werOfLinear[u, x]^m, x], x] /; FreeQ[{F, c}, x] && PolynomialQ[w, x] && LinearQ[v, x] && PowerOfLinearQ[u, x]
&& IntegerQ[m] &&  !$UseGamma === True

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=15ex(36+36x19x2+10exx2+x3)x2dx=15(10+ex(36+36x19x2+x3)x2)dx=2x+15ex(36+36x19x2+x3)x2dx=2x+15(19ex+36exx2+36exx+exx)dx=2x+15exxdx195exdx+365exx2dx+365exxdx=19ex536ex5x+2xexx5+36Ei(x)5+15exdx365exxdx=18ex536ex5x+2xexx5

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 24, normalized size = 0.83 15(ex(1836xx)+10x)

Antiderivative was successfully verified.

[In]

Integrate[(36 + 36*x - 19*x^2 + 10*E^x*x^2 + x^3)/(5*E^x*x^2),x]

[Out]

((18 - 36/x - x)/E^x + 10*x)/5

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 26, normalized size = 0.90 (10x2exx2+18x36)e(x)5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(10*exp(x)*x^2+x^3-19*x^2+36*x+36)/exp(x)/x^2,x, algorithm="fricas")

[Out]

1/5*(10*x^2*e^x - x^2 + 18*x - 36)*e^(-x)/x

________________________________________________________________________________________

giac [A]  time = 0.21, size = 32, normalized size = 1.10 x2e(x)10x218xe(x)+36e(x)5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(10*exp(x)*x^2+x^3-19*x^2+36*x+36)/exp(x)/x^2,x, algorithm="giac")

[Out]

-1/5*(x^2*e^(-x) - 10*x^2 - 18*x*e^(-x) + 36*e^(-x))/x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 22, normalized size = 0.76




method result size



risch 2x(x218x+36)ex5x 22
norman (365+18x5x25+2exx2)exx 26
default 2xxex5+18ex536ex5x 27



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/5*(10*exp(x)*x^2+x^3-19*x^2+36*x+36)/exp(x)/x^2,x,method=_RETURNVERBOSE)

[Out]

2*x-1/5*(x^2-18*x+36)/x*exp(-x)

________________________________________________________________________________________

maxima [C]  time = 0.50, size = 30, normalized size = 1.03 15(x+1)e(x)+2x+365Ei(x)+195e(x)365Γ(1,x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(10*exp(x)*x^2+x^3-19*x^2+36*x+36)/exp(x)/x^2,x, algorithm="maxima")

[Out]

-1/5*(x + 1)*e^(-x) + 2*x + 36/5*Ei(-x) + 19/5*e^(-x) - 36/5*gamma(-1, x)

________________________________________________________________________________________

mupad [B]  time = 0.09, size = 26, normalized size = 0.90 2x+18ex5xex536ex5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(-x)*((36*x)/5 + 2*x^2*exp(x) - (19*x^2)/5 + x^3/5 + 36/5))/x^2,x)

[Out]

2*x + (18*exp(-x))/5 - (x*exp(-x))/5 - (36*exp(-x))/(5*x)

________________________________________________________________________________________

sympy [A]  time = 0.12, size = 17, normalized size = 0.59 2x+(x2+18x36)ex5x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/5*(10*exp(x)*x**2+x**3-19*x**2+36*x+36)/exp(x)/x**2,x)

[Out]

2*x + (-x**2 + 18*x - 36)*exp(-x)/(5*x)

________________________________________________________________________________________