3.33.88 257x18x227x3+18x49x2+9x3dx

Optimal. Leaf size=26 259xx+x2log((1x)x2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 26, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 34, number of rulesintegrand size = 0.059, Rules used = {1593, 1620} x2x+259xlog(1x)2log(x)

Antiderivative was successfully verified.

[In]

Int[(25 - 7*x - 18*x^2 - 27*x^3 + 18*x^4)/(-9*x^2 + 9*x^3),x]

[Out]

25/(9*x) - x + x^2 - Log[1 - x] - 2*Log[x]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 1620

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]

Rubi steps

integral=257x18x227x3+18x4x2(9+9x)dx=(1+11x259x22x+2x)dx=259xx+x2log(1x)2log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 30, normalized size = 1.15 19(25x9x+9x29log(1x)18log(x))

Antiderivative was successfully verified.

[In]

Integrate[(25 - 7*x - 18*x^2 - 27*x^3 + 18*x^4)/(-9*x^2 + 9*x^3),x]

[Out]

(25/x - 9*x + 9*x^2 - 9*Log[1 - x] - 18*Log[x])/9

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 29, normalized size = 1.12 9x39x29xlog(x1)18xlog(x)+259x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((18*x^4-27*x^3-18*x^2-7*x+25)/(9*x^3-9*x^2),x, algorithm="fricas")

[Out]

1/9*(9*x^3 - 9*x^2 - 9*x*log(x - 1) - 18*x*log(x) + 25)/x

________________________________________________________________________________________

giac [A]  time = 0.22, size = 24, normalized size = 0.92 x2x+259xlog(|x1|)2log(|x|)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((18*x^4-27*x^3-18*x^2-7*x+25)/(9*x^3-9*x^2),x, algorithm="giac")

[Out]

x^2 - x + 25/9/x - log(abs(x - 1)) - 2*log(abs(x))

________________________________________________________________________________________

maple [A]  time = 0.51, size = 23, normalized size = 0.88




method result size



default x2xln(x1)+259x2ln(x) 23
risch x2xln(x1)+259x2ln(x) 23
norman 259+x3x2x2ln(x)ln(x1) 26
meijerg 259x2ln(x)2iπln(1x)+x(6+3x)33x 34



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((18*x^4-27*x^3-18*x^2-7*x+25)/(9*x^3-9*x^2),x,method=_RETURNVERBOSE)

[Out]

x^2-x-ln(x-1)+25/9/x-2*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.46, size = 22, normalized size = 0.85 x2x+259xlog(x1)2log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((18*x^4-27*x^3-18*x^2-7*x+25)/(9*x^3-9*x^2),x, algorithm="maxima")

[Out]

x^2 - x + 25/9/x - log(x - 1) - 2*log(x)

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 22, normalized size = 0.85 259xln(x1)2ln(x)x+x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((7*x + 18*x^2 + 27*x^3 - 18*x^4 - 25)/(9*x^2 - 9*x^3),x)

[Out]

25/(9*x) - log(x - 1) - 2*log(x) - x + x^2

________________________________________________________________________________________

sympy [A]  time = 0.14, size = 19, normalized size = 0.73 x2x2log(x)log(x1)+259x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((18*x**4-27*x**3-18*x**2-7*x+25)/(9*x**3-9*x**2),x)

[Out]

x**2 - x - 2*log(x) - log(x - 1) + 25/(9*x)

________________________________________________________________________________________