Optimal. Leaf size=14 \[ \frac {1}{2} e^{2 x} (2+x+\log (2)) \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 26, normalized size of antiderivative = 1.86, number of steps used = 3, number of rules used = 3, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {12, 2176, 2194} \begin {gather*} \frac {1}{4} e^{2 x} (2 x+5+\log (4))-\frac {e^{2 x}}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int e^{2 x} (5+2 x+2 \log (2)) \, dx\\ &=\frac {1}{4} e^{2 x} (5+2 x+\log (4))-\frac {1}{2} \int e^{2 x} \, dx\\ &=-\frac {e^{2 x}}{4}+\frac {1}{4} e^{2 x} (5+2 x+\log (4))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 1.36 \begin {gather*} \frac {1}{2} e^{2 x} \left (x+\frac {1}{2} (4+\log (4))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 11, normalized size = 0.79 \begin {gather*} \frac {1}{2} \, {\left (x + \log \relax (2) + 2\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 11, normalized size = 0.79 \begin {gather*} \frac {1}{2} \, {\left (x + \log \relax (2) + 2\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 12, normalized size = 0.86
method | result | size |
gosper | \(\frac {{\mathrm e}^{2 x} \left (\ln \relax (2)+2+x \right )}{2}\) | \(12\) |
risch | \(\frac {{\mathrm e}^{2 x} \left (\ln \relax (2)+2+x \right )}{2}\) | \(12\) |
norman | \(\left (1+\frac {\ln \relax (2)}{2}\right ) {\mathrm e}^{2 x}+\frac {x \,{\mathrm e}^{2 x}}{2}\) | \(20\) |
derivativedivides | \(\frac {x \,{\mathrm e}^{2 x}}{2}+{\mathrm e}^{2 x}+\frac {\ln \relax (2) {\mathrm e}^{2 x}}{2}\) | \(21\) |
default | \(\frac {x \,{\mathrm e}^{2 x}}{2}+{\mathrm e}^{2 x}+\frac {\ln \relax (2) {\mathrm e}^{2 x}}{2}\) | \(21\) |
meijerg | \(-1+\frac {5 \,{\mathrm e}^{2 x}}{4}-\frac {\ln \relax (2) \left (1-{\mathrm e}^{2 x}\right )}{2}-\frac {\left (-4 x +2\right ) {\mathrm e}^{2 x}}{8}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.34, size = 26, normalized size = 1.86 \begin {gather*} \frac {1}{4} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} + \frac {1}{2} \, e^{\left (2 \, x\right )} \log \relax (2) + \frac {5}{4} \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 13, normalized size = 0.93 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}\,\left (2\,x+\ln \relax (4)+4\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 12, normalized size = 0.86 \begin {gather*} \frac {\left (x + \log {\relax (2 )} + 2\right ) e^{2 x}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________