3.33.91 12e2x(5+2x+2log(2))dx

Optimal. Leaf size=14 12e2x(2+x+log(2))

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 26, normalized size of antiderivative = 1.86, number of steps used = 3, number of rules used = 3, integrand size = 18, number of rulesintegrand size = 0.167, Rules used = {12, 2176, 2194} 14e2x(2x+5+log(4))e2x4

Antiderivative was successfully verified.

[In]

Int[(E^(2*x)*(5 + 2*x + 2*Log[2]))/2,x]

[Out]

-1/4*E^(2*x) + (E^(2*x)*(5 + 2*x + Log[4]))/4

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2176

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^m
*(b*F^(g*(e + f*x)))^n)/(f*g*n*Log[F]), x] - Dist[(d*m)/(f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !$UseGamma === True

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

integral=12e2x(5+2x+2log(2))dx=14e2x(5+2x+log(4))12e2xdx=e2x4+14e2x(5+2x+log(4))

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 19, normalized size = 1.36 12e2x(x+12(4+log(4)))

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*x)*(5 + 2*x + 2*Log[2]))/2,x]

[Out]

(E^(2*x)*(x + (4 + Log[4])/2))/2

________________________________________________________________________________________

fricas [A]  time = 0.58, size = 11, normalized size = 0.79 12(x+log(2)+2)e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(2*log(2)+5+2*x)*exp(2*x),x, algorithm="fricas")

[Out]

1/2*(x + log(2) + 2)*e^(2*x)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 11, normalized size = 0.79 12(x+log(2)+2)e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(2*log(2)+5+2*x)*exp(2*x),x, algorithm="giac")

[Out]

1/2*(x + log(2) + 2)*e^(2*x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 12, normalized size = 0.86




method result size



gosper e2x(ln(2)+2+x)2 12
risch e2x(ln(2)+2+x)2 12
norman (1+ln(2)2)e2x+xe2x2 20
derivativedivides xe2x2+e2x+ln(2)e2x2 21
default xe2x2+e2x+ln(2)e2x2 21
meijerg 1+5e2x4ln(2)(1e2x)2(4x+2)e2x8 32



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/2*(2*ln(2)+5+2*x)*exp(2*x),x,method=_RETURNVERBOSE)

[Out]

1/2*exp(2*x)*(ln(2)+2+x)

________________________________________________________________________________________

maxima [B]  time = 0.34, size = 26, normalized size = 1.86 14(2x1)e(2x)+12e(2x)log(2)+54e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(2*log(2)+5+2*x)*exp(2*x),x, algorithm="maxima")

[Out]

1/4*(2*x - 1)*e^(2*x) + 1/2*e^(2*x)*log(2) + 5/4*e^(2*x)

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 13, normalized size = 0.93 e2x(2x+ln(4)+4)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(2*x)*(2*x + 2*log(2) + 5))/2,x)

[Out]

(exp(2*x)*(2*x + log(4) + 4))/4

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 12, normalized size = 0.86 (x+log(2)+2)e2x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/2*(2*ln(2)+5+2*x)*exp(2*x),x)

[Out]

(x + log(2) + 2)*exp(2*x)/2

________________________________________________________________________________________