Optimal. Leaf size=19 \[ \frac {e \left (4-\frac {4}{4+\log \left (\frac {x}{15}\right )}\right )}{x^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 23, normalized size of antiderivative = 1.21, number of steps used = 9, number of rules used = 6, integrand size = 56, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {6688, 12, 6742, 2306, 2309, 2178} \begin {gather*} \frac {4 e}{x^2}-\frac {4 e}{x^2 \left (\log \left (\frac {x}{15}\right )+4\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e \left (-23-14 \log \left (\frac {x}{15}\right )-2 \log ^2\left (\frac {x}{15}\right )\right )}{x^3 \left (4+\log \left (\frac {x}{15}\right )\right )^2} \, dx\\ &=(4 e) \int \frac {-23-14 \log \left (\frac {x}{15}\right )-2 \log ^2\left (\frac {x}{15}\right )}{x^3 \left (4+\log \left (\frac {x}{15}\right )\right )^2} \, dx\\ &=(4 e) \int \left (-\frac {2}{x^3}+\frac {1}{x^3 \left (4+\log \left (\frac {x}{15}\right )\right )^2}+\frac {2}{x^3 \left (4+\log \left (\frac {x}{15}\right )\right )}\right ) \, dx\\ &=\frac {4 e}{x^2}+(4 e) \int \frac {1}{x^3 \left (4+\log \left (\frac {x}{15}\right )\right )^2} \, dx+(8 e) \int \frac {1}{x^3 \left (4+\log \left (\frac {x}{15}\right )\right )} \, dx\\ &=\frac {4 e}{x^2}-\frac {4 e}{x^2 \left (4+\log \left (\frac {x}{15}\right )\right )}+\frac {1}{225} (8 e) \operatorname {Subst}\left (\int \frac {e^{-2 x}}{4+x} \, dx,x,\log \left (\frac {x}{15}\right )\right )-(8 e) \int \frac {1}{x^3 \left (4+\log \left (\frac {x}{15}\right )\right )} \, dx\\ &=\frac {4 e}{x^2}+\frac {8}{225} e^9 \text {Ei}\left (-2 \left (4+\log \left (\frac {x}{15}\right )\right )\right )-\frac {4 e}{x^2 \left (4+\log \left (\frac {x}{15}\right )\right )}-\frac {1}{225} (8 e) \operatorname {Subst}\left (\int \frac {e^{-2 x}}{4+x} \, dx,x,\log \left (\frac {x}{15}\right )\right )\\ &=\frac {4 e}{x^2}-\frac {4 e}{x^2 \left (4+\log \left (\frac {x}{15}\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 18, normalized size = 0.95 \begin {gather*} -\frac {4 e \left (-1+\frac {1}{4+\log \left (\frac {x}{15}\right )}\right )}{x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 30, normalized size = 1.58 \begin {gather*} \frac {4 \, {\left (e \log \left (\frac {1}{15} \, x\right ) + 3 \, e\right )}}{x^{2} \log \left (\frac {1}{15} \, x\right ) + 4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 30, normalized size = 1.58 \begin {gather*} \frac {4 \, {\left (e \log \left (\frac {1}{15} \, x\right ) + 3 \, e\right )}}{x^{2} \log \left (\frac {1}{15} \, x\right ) + 4 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 1.26
method | result | size |
risch | \(\frac {4 \,{\mathrm e}}{x^{2}}-\frac {4 \,{\mathrm e}}{x^{2} \left (4+\ln \left (\frac {x}{15}\right )\right )}\) | \(24\) |
norman | \(\frac {4 \,{\mathrm e} \ln \left (\frac {x}{15}\right )+12 \,{\mathrm e}}{x^{2} \left (4+\ln \left (\frac {x}{15}\right )\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.64, size = 38, normalized size = 2.00 \begin {gather*} \frac {4 \, {\left ({\left (\log \relax (5) + \log \relax (3) - 3\right )} e - e \log \relax (x)\right )}}{x^{2} {\left (\log \relax (5) + \log \relax (3) - 4\right )} - x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.18, size = 21, normalized size = 1.11 \begin {gather*} \frac {4\,\mathrm {e}\,\left (\ln \left (\frac {x}{15}\right )+3\right )}{x^2\,\left (\ln \left (\frac {x}{15}\right )+4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 26, normalized size = 1.37 \begin {gather*} - \frac {4 e}{x^{2} \log {\left (\frac {x}{15} \right )} + 4 x^{2}} + \frac {4 e}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________