3.33.92
Optimal. Leaf size=19
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 23, normalized size of antiderivative = 1.21,
number of steps used = 9, number of rules used = 6, integrand size = 56, = 0.107, Rules used =
{6688, 12, 6742, 2306, 2309, 2178}
Antiderivative was successfully verified.
[In]
Int[(-92*E - 56*E*Log[x/15] - 8*E*Log[x/15]^2)/(16*x^3 + 8*x^3*Log[x/15] + x^3*Log[x/15]^2),x]
[Out]
(4*E)/x^2 - (4*E)/(x^2*(4 + Log[x/15]))
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2306
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]
Rule 2309
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
+ b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
Rule 6688
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 18, normalized size = 0.95
Antiderivative was successfully verified.
[In]
Integrate[(-92*E - 56*E*Log[x/15] - 8*E*Log[x/15]^2)/(16*x^3 + 8*x^3*Log[x/15] + x^3*Log[x/15]^2),x]
[Out]
(-4*E*(-1 + (4 + Log[x/15])^(-1)))/x^2
________________________________________________________________________________________
fricas [A] time = 0.50, size = 30, normalized size = 1.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*exp(1)*log(1/15*x)^2-56*exp(1)*log(1/15*x)-92*exp(1))/(x^3*log(1/15*x)^2+8*x^3*log(1/15*x)+16*x^
3),x, algorithm="fricas")
[Out]
4*(e*log(1/15*x) + 3*e)/(x^2*log(1/15*x) + 4*x^2)
________________________________________________________________________________________
giac [A] time = 0.28, size = 30, normalized size = 1.58
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*exp(1)*log(1/15*x)^2-56*exp(1)*log(1/15*x)-92*exp(1))/(x^3*log(1/15*x)^2+8*x^3*log(1/15*x)+16*x^
3),x, algorithm="giac")
[Out]
4*(e*log(1/15*x) + 3*e)/(x^2*log(1/15*x) + 4*x^2)
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 1.26
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-8*exp(1)*ln(1/15*x)^2-56*exp(1)*ln(1/15*x)-92*exp(1))/(x^3*ln(1/15*x)^2+8*x^3*ln(1/15*x)+16*x^3),x,metho
d=_RETURNVERBOSE)
[Out]
4*exp(1)/x^2-4/x^2*exp(1)/(4+ln(1/15*x))
________________________________________________________________________________________
maxima [B] time = 0.64, size = 38, normalized size = 2.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*exp(1)*log(1/15*x)^2-56*exp(1)*log(1/15*x)-92*exp(1))/(x^3*log(1/15*x)^2+8*x^3*log(1/15*x)+16*x^
3),x, algorithm="maxima")
[Out]
4*((log(5) + log(3) - 3)*e - e*log(x))/(x^2*(log(5) + log(3) - 4) - x^2*log(x))
________________________________________________________________________________________
mupad [B] time = 2.18, size = 21, normalized size = 1.11
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(92*exp(1) + 56*log(x/15)*exp(1) + 8*log(x/15)^2*exp(1))/(8*x^3*log(x/15) + 16*x^3 + x^3*log(x/15)^2),x)
[Out]
(4*exp(1)*(log(x/15) + 3))/(x^2*(log(x/15) + 4))
________________________________________________________________________________________
sympy [A] time = 0.23, size = 26, normalized size = 1.37
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-8*exp(1)*ln(1/15*x)**2-56*exp(1)*ln(1/15*x)-92*exp(1))/(x**3*ln(1/15*x)**2+8*x**3*ln(1/15*x)+16*x*
*3),x)
[Out]
-4*E/(x**2*log(x/15) + 4*x**2) + 4*E/x**2
________________________________________________________________________________________