Optimal. Leaf size=22 \[ -\frac {4 e^{-e^{-4+4 x}+x^2}}{x}+x \]
________________________________________________________________________________________
Rubi [B] time = 0.17, antiderivative size = 55, normalized size of antiderivative = 2.50, number of steps used = 3, number of rules used = 2, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.049, Rules used = {14, 2288} \begin {gather*} x-\frac {4 e^{x^2-e^{4 x-4}-4} \left (2 e^{4 x} x-e^4 x^2\right )}{\left (2 e^{4 x-4}-x\right ) x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {4 e^{-4-e^{-4+4 x}+x^2} \left (-e^4-4 e^{4 x} x+2 e^4 x^2\right )}{x^2}\right ) \, dx\\ &=x-4 \int \frac {e^{-4-e^{-4+4 x}+x^2} \left (-e^4-4 e^{4 x} x+2 e^4 x^2\right )}{x^2} \, dx\\ &=x-\frac {4 e^{-4-e^{-4+4 x}+x^2} \left (2 e^{4 x} x-e^4 x^2\right )}{\left (2 e^{-4+4 x}-x\right ) x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 22, normalized size = 1.00 \begin {gather*} -\frac {4 e^{-e^{-4+4 x}+x^2}}{x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 23, normalized size = 1.05 \begin {gather*} \frac {x^{2} - 4 \, e^{\left (x^{2} - e^{\left (4 \, x - 4\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 23, normalized size = 1.05 \begin {gather*} \frac {x^{2} - 4 \, e^{\left (x^{2} - e^{\left (4 \, x - 4\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 21, normalized size = 0.95
method | result | size |
risch | \(x -\frac {4 \,{\mathrm e}^{-{\mathrm e}^{4 x -4}+x^{2}}}{x}\) | \(21\) |
norman | \(\frac {x^{2}-4 \,{\mathrm e}^{-{\mathrm e}^{4 x -4}+x^{2}}}{x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 20, normalized size = 0.91 \begin {gather*} x - \frac {4 \, e^{\left (x^{2} - e^{\left (4 \, x - 4\right )}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.98, size = 20, normalized size = 0.91 \begin {gather*} x-\frac {4\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{-{\mathrm {e}}^{4\,x}\,{\mathrm {e}}^{-4}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 15, normalized size = 0.68 \begin {gather*} x - \frac {4 e^{x^{2} - e^{4 x - 4}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________