3.33.94 x2+ee4+4x+x2(4+16e4+4xx8x2)x2dx

Optimal. Leaf size=22 4ee4+4x+x2x+x

________________________________________________________________________________________

Rubi [B]  time = 0.17, antiderivative size = 55, normalized size of antiderivative = 2.50, number of steps used = 3, number of rules used = 2, integrand size = 41, number of rulesintegrand size = 0.049, Rules used = {14, 2288} x4ex2e4x44(2e4xxe4x2)(2e4x4x)x2

Antiderivative was successfully verified.

[In]

Int[(x^2 + E^(-E^(-4 + 4*x) + x^2)*(4 + 16*E^(-4 + 4*x)*x - 8*x^2))/x^2,x]

[Out]

x - (4*E^(-4 - E^(-4 + 4*x) + x^2)*(2*E^(4*x)*x - E^4*x^2))/((2*E^(-4 + 4*x) - x)*x^2)

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=(14e4e4+4x+x2(e44e4xx+2e4x2)x2)dx=x4e4e4+4x+x2(e44e4xx+2e4x2)x2dx=x4e4e4+4x+x2(2e4xxe4x2)(2e4+4xx)x2

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 22, normalized size = 1.00 4ee4+4x+x2x+x

Antiderivative was successfully verified.

[In]

Integrate[(x^2 + E^(-E^(-4 + 4*x) + x^2)*(4 + 16*E^(-4 + 4*x)*x - 8*x^2))/x^2,x]

[Out]

(-4*E^(-E^(-4 + 4*x) + x^2))/x + x

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 23, normalized size = 1.05 x24e(x2e(4x4))x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((16*x*exp(2*x-2)^2-8*x^2+4)*exp(-exp(2*x-2)^2+x^2)+x^2)/x^2,x, algorithm="fricas")

[Out]

(x^2 - 4*e^(x^2 - e^(4*x - 4)))/x

________________________________________________________________________________________

giac [A]  time = 0.24, size = 23, normalized size = 1.05 x24e(x2e(4x4))x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((16*x*exp(2*x-2)^2-8*x^2+4)*exp(-exp(2*x-2)^2+x^2)+x^2)/x^2,x, algorithm="giac")

[Out]

(x^2 - 4*e^(x^2 - e^(4*x - 4)))/x

________________________________________________________________________________________

maple [A]  time = 0.06, size = 21, normalized size = 0.95




method result size



risch x4ee4x4+x2x 21
norman x24ee4x4+x2x 26



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((16*x*exp(2*x-2)^2-8*x^2+4)*exp(-exp(2*x-2)^2+x^2)+x^2)/x^2,x,method=_RETURNVERBOSE)

[Out]

x-4*exp(-exp(4*x-4)+x^2)/x

________________________________________________________________________________________

maxima [A]  time = 0.48, size = 20, normalized size = 0.91 x4e(x2e(4x4))x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((16*x*exp(2*x-2)^2-8*x^2+4)*exp(-exp(2*x-2)^2+x^2)+x^2)/x^2,x, algorithm="maxima")

[Out]

x - 4*e^(x^2 - e^(4*x - 4))/x

________________________________________________________________________________________

mupad [B]  time = 1.98, size = 20, normalized size = 0.91 x4ex2ee4xe4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x^2 - exp(4*x - 4))*(16*x*exp(4*x - 4) - 8*x^2 + 4) + x^2)/x^2,x)

[Out]

x - (4*exp(x^2)*exp(-exp(4*x)*exp(-4)))/x

________________________________________________________________________________________

sympy [A]  time = 0.39, size = 15, normalized size = 0.68 x4ex2e4x4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((16*x*exp(2*x-2)**2-8*x**2+4)*exp(-exp(2*x-2)**2+x**2)+x**2)/x**2,x)

[Out]

x - 4*exp(x**2 - exp(4*x - 4))/x

________________________________________________________________________________________