3.33.95
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [A] time = 2.07, antiderivative size = 26, normalized size of antiderivative = 1.00,
number of steps used = 1, number of rules used = 3, integrand size = 126, = 0.024, Rules used
= {6741, 6742, 6686}
Antiderivative was successfully verified.
[In]
Int[((E^(2/x)*(40 - 20*x) - 10*x + (-2*x - 4*E^(2/x)*x)*Log[x/(x + 2*E^(2/x)*x)^5])*Log[(1 + Log[x/(x + 2*E^(2
/x)*x)^5])/x])/(x^2 + 2*E^(2/x)*x^2 + (x^2 + 2*E^(2/x)*x^2)*Log[x/(x + 2*E^(2/x)*x)^5]),x]
[Out]
Log[(1 + Log[x/(x + 2*E^(2/x)*x)^5])/x]^2
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 26, normalized size = 1.00
Antiderivative was successfully verified.
[In]
Integrate[((E^(2/x)*(40 - 20*x) - 10*x + (-2*x - 4*E^(2/x)*x)*Log[x/(x + 2*E^(2/x)*x)^5])*Log[(1 + Log[x/(x +
2*E^(2/x)*x)^5])/x])/(x^2 + 2*E^(2/x)*x^2 + (x^2 + 2*E^(2/x)*x^2)*Log[x/(x + 2*E^(2/x)*x)^5]),x]
[Out]
Log[(1 + Log[x/(x + 2*E^(2/x)*x)^5])/x]^2
________________________________________________________________________________________
fricas [B] time = 0.60, size = 71, normalized size = 2.73
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x*exp(1/x)^2-2*x)*log(x/(2*x*exp(1/x)^2+x)^5)+(-20*x+40)*exp(1/x)^2-10*x)*log((log(x/(2*x*exp(1
/x)^2+x)^5)+1)/x)/((2*x^2*exp(1/x)^2+x^2)*log(x/(2*x*exp(1/x)^2+x)^5)+2*x^2*exp(1/x)^2+x^2),x, algorithm="fric
as")
[Out]
log((log(1/(32*x^4*e^(10/x) + 80*x^4*e^(8/x) + 80*x^4*e^(6/x) + 40*x^4*e^(4/x) + 10*x^4*e^(2/x) + x^4)) + 1)/x
)^2
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x*exp(1/x)^2-2*x)*log(x/(2*x*exp(1/x)^2+x)^5)+(-20*x+40)*exp(1/x)^2-10*x)*log((log(x/(2*x*exp(1
/x)^2+x)^5)+1)/x)/((2*x^2*exp(1/x)^2+x^2)*log(x/(2*x*exp(1/x)^2+x)^5)+2*x^2*exp(1/x)^2+x^2),x, algorithm="giac
")
[Out]
integrate(-2*(10*(x - 2)*e^(2/x) + (2*x*e^(2/x) + x)*log(x/(2*x*e^(2/x) + x)^5) + 5*x)*log((log(x/(2*x*e^(2/x)
+ x)^5) + 1)/x)/(2*x^2*e^(2/x) + x^2 + (2*x^2*e^(2/x) + x^2)*log(x/(2*x*e^(2/x) + x)^5)), x)
________________________________________________________________________________________
maple [C] time = 3.47, size = 28486, normalized size = 1095.62
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-4*x*exp(1/x)^2-2*x)*ln(x/(2*x*exp(1/x)^2+x)^5)+(-20*x+40)*exp(1/x)^2-10*x)*ln((ln(x/(2*x*exp(1/x)^2+x)^
5)+1)/x)/((2*x^2*exp(1/x)^2+x^2)*ln(x/(2*x*exp(1/x)^2+x)^5)+2*x^2*exp(1/x)^2+x^2),x,method=_RETURNVERBOSE)
[Out]
result too large to display
________________________________________________________________________________________
maxima [B] time = 0.70, size = 112, normalized size = 4.31
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x*exp(1/x)^2-2*x)*log(x/(2*x*exp(1/x)^2+x)^5)+(-20*x+40)*exp(1/x)^2-10*x)*log((log(x/(2*x*exp(1
/x)^2+x)^5)+1)/x)/((2*x^2*exp(1/x)^2+x^2)*log(x/(2*x*exp(1/x)^2+x)^5)+2*x^2*exp(1/x)^2+x^2),x, algorithm="maxi
ma")
[Out]
-2*log(5)*log(x) - log(x)^2 - 2*(log(x) - log(4/5*log(x) + log(2*e^(2/x) + 1) - 1/5))*log((log(x/(2*x*e^(2/x)
+ x)^5) + 1)/x) + 2*(log(5) + log(x))*log(4*log(x) + 5*log(2*e^(2/x) + 1) - 1) - log(4*log(x) + 5*log(2*e^(2/x
) + 1) - 1)^2
________________________________________________________________________________________
mupad [B] time = 3.69, size = 25, normalized size = 0.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log((log(x/(x + 2*x*exp(2/x))^5) + 1)/x)*(10*x + exp(2/x)*(20*x - 40) + log(x/(x + 2*x*exp(2/x))^5)*(2*x
+ 4*x*exp(2/x))))/(log(x/(x + 2*x*exp(2/x))^5)*(2*x^2*exp(2/x) + x^2) + 2*x^2*exp(2/x) + x^2),x)
[Out]
log((log(x/(x + 2*x*exp(2/x))^5) + 1)/x)^2
________________________________________________________________________________________
sympy [A] time = 7.24, size = 20, normalized size = 0.77
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x*exp(1/x)**2-2*x)*ln(x/(2*x*exp(1/x)**2+x)**5)+(-20*x+40)*exp(1/x)**2-10*x)*ln((ln(x/(2*x*exp(
1/x)**2+x)**5)+1)/x)/((2*x**2*exp(1/x)**2+x**2)*ln(x/(2*x*exp(1/x)**2+x)**5)+2*x**2*exp(1/x)**2+x**2),x)
[Out]
log((log(x/(2*x*exp(2/x) + x)**5) + 1)/x)**2
________________________________________________________________________________________