Optimal. Leaf size=26 \[ \left (-x+\frac {24}{4+\frac {e^x}{3 x^2 \log (x)}}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 8.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 e^{3 x} x-144 e^{2 x} x^2+\left (e^{2 x} \left (-432 x^2+216 x^3\right )+e^x \left (10368 x^3-1728 x^4\right )\right ) \log (x)+e^x \left (20736 x^3-17280 x^4+2592 x^5\right ) \log ^2(x)+\left (-20736 x^6+3456 x^7\right ) \log ^3(x)}{e^{3 x}+36 e^{2 x} x^2 \log (x)+432 e^x x^4 \log ^2(x)+1728 x^6 \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (e^{2 x} \left (e^x-72 x\right )+108 e^x x \left (e^x (-2+x)-8 (-6+x) x\right ) \log (x)+432 e^x x^2 \left (24-20 x+3 x^2\right ) \log ^2(x)+1728 (-6+x) x^5 \log ^3(x)\right )}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx\\ &=2 \int \frac {x \left (e^{2 x} \left (e^x-72 x\right )+108 e^x x \left (e^x (-2+x)-8 (-6+x) x\right ) \log (x)+432 e^x x^2 \left (24-20 x+3 x^2\right ) \log ^2(x)+1728 (-6+x) x^5 \log ^3(x)\right )}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx\\ &=2 \int \left (x+\frac {62208 x^5 \log ^2(x) (-1-2 \log (x)+x \log (x))}{\left (e^x+12 x^2 \log (x)\right )^3}-\frac {864 x^3 (6+x) \log (x) (-1-2 \log (x)+x \log (x))}{\left (e^x+12 x^2 \log (x)\right )^2}+\frac {72 x^2 (-1-3 \log (x)+x \log (x))}{e^x+12 x^2 \log (x)}\right ) \, dx\\ &=x^2+144 \int \frac {x^2 (-1-3 \log (x)+x \log (x))}{e^x+12 x^2 \log (x)} \, dx-1728 \int \frac {x^3 (6+x) \log (x) (-1-2 \log (x)+x \log (x))}{\left (e^x+12 x^2 \log (x)\right )^2} \, dx+124416 \int \frac {x^5 \log ^2(x) (-1-2 \log (x)+x \log (x))}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx\\ &=x^2+144 \int \left (-\frac {x^2}{e^x+12 x^2 \log (x)}-\frac {3 x^2 \log (x)}{e^x+12 x^2 \log (x)}+\frac {x^3 \log (x)}{e^x+12 x^2 \log (x)}\right ) \, dx-1728 \int \left (\frac {6 x^3 \log (x) (-1-2 \log (x)+x \log (x))}{\left (e^x+12 x^2 \log (x)\right )^2}+\frac {x^4 \log (x) (-1-2 \log (x)+x \log (x))}{\left (e^x+12 x^2 \log (x)\right )^2}\right ) \, dx+124416 \int \left (-\frac {x^5 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^3}-\frac {2 x^5 \log ^3(x)}{\left (e^x+12 x^2 \log (x)\right )^3}+\frac {x^6 \log ^3(x)}{\left (e^x+12 x^2 \log (x)\right )^3}\right ) \, dx\\ &=x^2-144 \int \frac {x^2}{e^x+12 x^2 \log (x)} \, dx+144 \int \frac {x^3 \log (x)}{e^x+12 x^2 \log (x)} \, dx-432 \int \frac {x^2 \log (x)}{e^x+12 x^2 \log (x)} \, dx-1728 \int \frac {x^4 \log (x) (-1-2 \log (x)+x \log (x))}{\left (e^x+12 x^2 \log (x)\right )^2} \, dx-10368 \int \frac {x^3 \log (x) (-1-2 \log (x)+x \log (x))}{\left (e^x+12 x^2 \log (x)\right )^2} \, dx-124416 \int \frac {x^5 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx+124416 \int \frac {x^6 \log ^3(x)}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx-248832 \int \frac {x^5 \log ^3(x)}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx\\ &=x^2-144 \int \frac {x^2}{e^x+12 x^2 \log (x)} \, dx+144 \int \frac {x^3 \log (x)}{e^x+12 x^2 \log (x)} \, dx-432 \int \frac {x^2 \log (x)}{e^x+12 x^2 \log (x)} \, dx-1728 \int \left (-\frac {x^4 \log (x)}{\left (e^x+12 x^2 \log (x)\right )^2}-\frac {2 x^4 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^2}+\frac {x^5 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^2}\right ) \, dx-10368 \int \left (-\frac {x^3 \log (x)}{\left (e^x+12 x^2 \log (x)\right )^2}-\frac {2 x^3 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^2}+\frac {x^4 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^2}\right ) \, dx-124416 \int \frac {x^5 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx+124416 \int \frac {x^6 \log ^3(x)}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx-248832 \int \frac {x^5 \log ^3(x)}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx\\ &=x^2-144 \int \frac {x^2}{e^x+12 x^2 \log (x)} \, dx+144 \int \frac {x^3 \log (x)}{e^x+12 x^2 \log (x)} \, dx-432 \int \frac {x^2 \log (x)}{e^x+12 x^2 \log (x)} \, dx+1728 \int \frac {x^4 \log (x)}{\left (e^x+12 x^2 \log (x)\right )^2} \, dx-1728 \int \frac {x^5 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^2} \, dx+3456 \int \frac {x^4 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^2} \, dx+10368 \int \frac {x^3 \log (x)}{\left (e^x+12 x^2 \log (x)\right )^2} \, dx-10368 \int \frac {x^4 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^2} \, dx+20736 \int \frac {x^3 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^2} \, dx-124416 \int \frac {x^5 \log ^2(x)}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx+124416 \int \frac {x^6 \log ^3(x)}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx-248832 \int \frac {x^5 \log ^3(x)}{\left (e^x+12 x^2 \log (x)\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.10, size = 54, normalized size = 2.08 \begin {gather*} 2 \left (-6 x+\frac {x^2}{2}+\frac {18 e^{2 x}}{\left (e^x+12 x^2 \log (x)\right )^2}+\frac {6 e^x (-6+x)}{e^x+12 x^2 \log (x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.51, size = 72, normalized size = 2.77 \begin {gather*} \frac {24 \, {\left (x^{4} - 6 \, x^{3} - 36 \, x^{2}\right )} e^{x} \log \relax (x) + 144 \, {\left (x^{6} - 12 \, x^{5}\right )} \log \relax (x)^{2} + {\left (x^{2} - 36\right )} e^{\left (2 \, x\right )}}{144 \, x^{4} \log \relax (x)^{2} + 24 \, x^{2} e^{x} \log \relax (x) + e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.70, size = 95, normalized size = 3.65 \begin {gather*} \frac {144 \, x^{6} \log \relax (x)^{2} - 1728 \, x^{5} \log \relax (x)^{2} + 24 \, x^{4} e^{x} \log \relax (x) - 1872 \, x^{4} \log \relax (x)^{2} - 144 \, x^{3} e^{x} \log \relax (x) - 1176 \, x^{2} e^{x} \log \relax (x) + x^{2} e^{\left (2 \, x\right )} - 49 \, e^{\left (2 \, x\right )}}{144 \, x^{4} \log \relax (x)^{2} + 24 \, x^{2} e^{x} \log \relax (x) + e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 47, normalized size = 1.81
method | result | size |
risch | \(x^{2}-12 x +\frac {12 \left (12 x^{3} \ln \relax (x )-72 x^{2} \ln \relax (x )+{\mathrm e}^{x} x -3 \,{\mathrm e}^{x}\right ) {\mathrm e}^{x}}{\left (12 x^{2} \ln \relax (x )+{\mathrm e}^{x}\right )^{2}}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.63, size = 70, normalized size = 2.69 \begin {gather*} \frac {x^{2} e^{\left (2 \, x\right )} + 24 \, {\left (x^{4} - 6 \, x^{3}\right )} e^{x} \log \relax (x) + 144 \, {\left (x^{6} - 12 \, x^{5} + 36 \, x^{4}\right )} \log \relax (x)^{2}}{144 \, x^{4} \log \relax (x)^{2} + 24 \, x^{2} e^{x} \log \relax (x) + e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.23, size = 155, normalized size = 5.96 \begin {gather*} x^2-12\,x+\frac {12\,\left (12\,x\,{\mathrm {e}}^{2\,x}-72\,x^3\,{\mathrm {e}}^x+12\,x^4\,{\mathrm {e}}^x-8\,x^2\,{\mathrm {e}}^{2\,x}+x^3\,{\mathrm {e}}^{2\,x}\right )}{\left ({\mathrm {e}}^x+12\,x^2\,\ln \relax (x)\right )\,\left (x^2\,{\mathrm {e}}^x-2\,x\,{\mathrm {e}}^x+12\,x^3\right )}+\frac {36\,{\mathrm {e}}^x\,\left (12\,x^5\,{\mathrm {e}}^x-2\,x^3\,{\mathrm {e}}^{2\,x}+x^4\,{\mathrm {e}}^{2\,x}\right )}{x^2\,\left ({\mathrm {e}}^{2\,x}+144\,x^4\,{\ln \relax (x)}^2+24\,x^2\,{\mathrm {e}}^x\,\ln \relax (x)\right )\,\left (x^2\,{\mathrm {e}}^x-2\,x\,{\mathrm {e}}^x+12\,x^3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 61, normalized size = 2.35 \begin {gather*} x^{2} + \frac {- 1728 x^{5} \log {\relax (x )}^{2} + 5184 x^{4} \log {\relax (x )}^{2} - 144 x^{3} e^{x} \log {\relax (x )}}{144 x^{4} \log {\relax (x )}^{2} + 24 x^{2} e^{x} \log {\relax (x )} + e^{2 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________