Optimal. Leaf size=26 \[ e^{\frac {x}{\log \left (e^x \left (1+4 \left (x+\log ^2(3)\right )\right )+\log (x)\right )}}+x \]
________________________________________________________________________________________
Rubi [F] time = 30.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )+e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} \left (-1+e^x \left (-5 x-4 x^2-4 x \log ^2(3)\right )+\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right ) \log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )\right )}{\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} \left (-1-e^x x \left (5+4 x+4 \log ^2(3)\right )+\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right ) \log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )\right )}{\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}\right ) \, dx\\ &=x+\int \frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} \left (-1-e^x x \left (5+4 x+4 \log ^2(3)\right )+\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right ) \log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )\right )}{\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )} \, dx\\ &=x+\int \left (\frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} \left (-1-4 x-4 \log ^2(3)+4 x^2 \log (x)+5 x \left (1+\frac {4 \log ^2(3)}{5}\right ) \log (x)\right )}{\left (1+4 x+4 \log ^2(3)\right ) \left (4 e^x x+e^x \left (1+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}+\frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} \left (-4 x^2-5 x \left (1+\frac {4 \log ^2(3)}{5}\right )+4 x \log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )+\left (1+4 \log ^2(3)\right ) \log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )\right )}{\left (1+4 x+4 \log ^2(3)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}\right ) \, dx\\ &=x+\int \frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} \left (-1-4 x-4 \log ^2(3)+4 x^2 \log (x)+5 x \left (1+\frac {4 \log ^2(3)}{5}\right ) \log (x)\right )}{\left (1+4 x+4 \log ^2(3)\right ) \left (4 e^x x+e^x \left (1+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )} \, dx+\int \frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} \left (-4 x^2-5 x \left (1+\frac {4 \log ^2(3)}{5}\right )+4 x \log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )+\left (1+4 \log ^2(3)\right ) \log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )\right )}{\left (1+4 x+4 \log ^2(3)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )} \, dx\\ &=x+\int \left (\frac {4 e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} x}{\left (-1-4 x-4 \log ^2(3)\right ) \left (4 e^x x+e^x \left (1+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}+\frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} \left (1+4 \log ^2(3)\right )}{\left (-1-4 x-4 \log ^2(3)\right ) \left (4 e^x x+e^x \left (1+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}+\frac {4 e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} x^2 \log (x)}{\left (1+4 x+4 \log ^2(3)\right ) \left (4 e^x x+e^x \left (1+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}+\frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} x \left (5+4 \log ^2(3)\right ) \log (x)}{\left (1+4 x+4 \log ^2(3)\right ) \left (4 e^x x+e^x \left (1+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}\right ) \, dx+\int \frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} \left (-x \left (5+4 x+4 \log ^2(3)\right )+\left (1+4 x+4 \log ^2(3)\right ) \log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )\right )}{\left (1+4 x+4 \log ^2(3)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )} \, dx\\ &=x+4 \int \frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} x}{\left (-1-4 x-4 \log ^2(3)\right ) \left (4 e^x x+e^x \left (1+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )} \, dx+4 \int \frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} x^2 \log (x)}{\left (1+4 x+4 \log ^2(3)\right ) \left (4 e^x x+e^x \left (1+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )} \, dx+\left (1+4 \log ^2(3)\right ) \int \frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}}}{\left (-1-4 x-4 \log ^2(3)\right ) \left (4 e^x x+e^x \left (1+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )} \, dx+\left (5+4 \log ^2(3)\right ) \int \frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} x \log (x)}{\left (1+4 x+4 \log ^2(3)\right ) \left (4 e^x x+e^x \left (1+4 \log ^2(3)\right )+\log (x)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )} \, dx+\int \left (-\frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}} x \left (5+4 x+4 \log ^2(3)\right )}{\left (1+4 x+4 \log ^2(3)\right ) \log ^2\left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}+\frac {e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}}}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 27, normalized size = 1.04 \begin {gather*} e^{\frac {x}{\log \left (e^x \left (1+4 x+4 \log ^2(3)\right )+\log (x)\right )}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 25, normalized size = 0.96 \begin {gather*} x + e^{\left (\frac {x}{\log \left ({\left (4 \, \log \relax (3)^{2} + 4 \, x + 1\right )} e^{x} + \log \relax (x)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 7.21, size = 26, normalized size = 1.00 \begin {gather*} x + e^{\left (\frac {x}{\log \left (4 \, e^{x} \log \relax (3)^{2} + 4 \, x e^{x} + e^{x} + \log \relax (x)\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 1.00
method | result | size |
risch | \(x +{\mathrm e}^{\frac {x}{\ln \left (\ln \relax (x )+\left (4 \ln \relax (3)^{2}+4 x +1\right ) {\mathrm e}^{x}\right )}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.38, size = 26, normalized size = 1.00 \begin {gather*} x+{\mathrm {e}}^{\frac {x}{\ln \left ({\mathrm {e}}^x+\ln \relax (x)+4\,{\mathrm {e}}^x\,{\ln \relax (3)}^2+4\,x\,{\mathrm {e}}^x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________