Optimal. Leaf size=14 \[ e^{\frac {2 e^4 x}{5}} x^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 14, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {12, 1593, 2196, 2176, 2194} \begin {gather*} e^{\frac {2 e^4 x}{5}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{\frac {2 e^4 x}{5}} \left (10 x+2 e^4 x^2\right ) \, dx\\ &=\frac {1}{5} \int e^{\frac {2 e^4 x}{5}} x \left (10+2 e^4 x\right ) \, dx\\ &=\frac {1}{5} \int \left (10 e^{\frac {2 e^4 x}{5}} x+2 e^{4+\frac {2 e^4 x}{5}} x^2\right ) \, dx\\ &=\frac {2}{5} \int e^{4+\frac {2 e^4 x}{5}} x^2 \, dx+2 \int e^{\frac {2 e^4 x}{5}} x \, dx\\ &=5 e^{-4+\frac {2 e^4 x}{5}} x+e^{\frac {2 e^4 x}{5}} x^2-\frac {2 \int e^{4+\frac {2 e^4 x}{5}} x \, dx}{e^4}-\frac {5 \int e^{\frac {2 e^4 x}{5}} \, dx}{e^4}\\ &=-\frac {25}{2} e^{-8+\frac {2 e^4 x}{5}}+e^{\frac {2 e^4 x}{5}} x^2+\frac {5 \int e^{4+\frac {2 e^4 x}{5}} \, dx}{e^8}\\ &=e^{\frac {2 e^4 x}{5}} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 14, normalized size = 1.00 \begin {gather*} e^{\frac {2 e^4 x}{5}} x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 10, normalized size = 0.71 \begin {gather*} x^{2} e^{\left (\frac {2}{5} \, x e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 42, normalized size = 3.00 \begin {gather*} \frac {1}{2} \, {\left (2 \, x^{2} e^{8} - 10 \, x e^{4} + 25\right )} e^{\left (\frac {2}{5} \, x e^{4} - 8\right )} + \frac {5}{2} \, {\left (2 \, x e^{4} - 5\right )} e^{\left (\frac {2}{5} \, x e^{4} - 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 11, normalized size = 0.79
method | result | size |
risch | \(x^{2} {\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}}\) | \(11\) |
gosper | \(x^{2} {\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}}\) | \(15\) |
norman | \(x^{2} {\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}}\) | \(15\) |
meijerg | \(-\frac {25 \,{\mathrm e}^{-8} \left (2-\frac {\left (\frac {12 x^{2} {\mathrm e}^{8}}{25}-\frac {12 x \,{\mathrm e}^{4}}{5}+6\right ) {\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}}}{3}\right )}{4}+\frac {25 \,{\mathrm e}^{-8} \left (1-\frac {\left (2-\frac {4 x \,{\mathrm e}^{4}}{5}\right ) {\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}}}{2}\right )}{2}\) | \(51\) |
derivativedivides | \(50 \,{\mathrm e}^{-4} \left ({\mathrm e}^{-4} \left (\frac {{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}} x \,{\mathrm e}^{4}}{10}-\frac {{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}}}{4}\right )+{\mathrm e}^{-4} \left (\frac {{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}} x^{2} {\mathrm e}^{8}}{50}-\frac {{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}} x \,{\mathrm e}^{4}}{10}+\frac {{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}}}{4}\right )\right )\) | \(97\) |
default | \(50 \,{\mathrm e}^{-4} \left ({\mathrm e}^{-4} \left (\frac {{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}} x \,{\mathrm e}^{4}}{10}-\frac {{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}}}{4}\right )+{\mathrm e}^{-4} \left (\frac {{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}} x^{2} {\mathrm e}^{8}}{50}-\frac {{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}} x \,{\mathrm e}^{4}}{10}+\frac {{\mathrm e}^{\frac {2 x \,{\mathrm e}^{4}}{5}}}{4}\right )\right )\) | \(97\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 42, normalized size = 3.00 \begin {gather*} \frac {1}{2} \, {\left (2 \, x^{2} e^{8} - 10 \, x e^{4} + 25\right )} e^{\left (\frac {2}{5} \, x e^{4} - 8\right )} + \frac {5}{2} \, {\left (2 \, x e^{4} - 5\right )} e^{\left (\frac {2}{5} \, x e^{4} - 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.91, size = 10, normalized size = 0.71 \begin {gather*} x^2\,{\mathrm {e}}^{\frac {2\,x\,{\mathrm {e}}^4}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 12, normalized size = 0.86 \begin {gather*} x^{2} e^{\frac {2 x e^{4}}{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________