Optimal. Leaf size=23 \[ e^{-x} x \left (5+e^5 \left (16+\frac {3}{x}\right ) (3+x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.08, antiderivative size = 73, normalized size of antiderivative = 3.17, number of steps used = 9, number of rules used = 4, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {1586, 2196, 2194, 2176} \begin {gather*} 16 e^{5-x} x^2+32 e^{5-x} x+\left (5+19 e^5\right ) e^{-x} x+32 e^{5-x}-\left (5+42 e^5\right ) e^{-x}+\left (5+19 e^5\right ) e^{-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1586
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-x} \left (5+42 e^5+\left (-5-19 e^5\right ) x-16 e^5 x^2\right ) \, dx\\ &=\int \left (5 e^{-x} \left (1+\frac {42 e^5}{5}\right )-e^{-x} \left (5+19 e^5\right ) x-16 e^{5-x} x^2\right ) \, dx\\ &=-\left (16 \int e^{5-x} x^2 \, dx\right )+\left (-5-19 e^5\right ) \int e^{-x} x \, dx+\left (5+42 e^5\right ) \int e^{-x} \, dx\\ &=-e^{-x} \left (5+42 e^5\right )+e^{-x} \left (5+19 e^5\right ) x+16 e^{5-x} x^2-32 \int e^{5-x} x \, dx+\left (-5-19 e^5\right ) \int e^{-x} \, dx\\ &=e^{-x} \left (5+19 e^5\right )-e^{-x} \left (5+42 e^5\right )+32 e^{5-x} x+e^{-x} \left (5+19 e^5\right ) x+16 e^{5-x} x^2-32 \int e^{5-x} \, dx\\ &=32 e^{5-x}+e^{-x} \left (5+19 e^5\right )-e^{-x} \left (5+42 e^5\right )+32 e^{5-x} x+e^{-x} \left (5+19 e^5\right ) x+16 e^{5-x} x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 24, normalized size = 1.04 \begin {gather*} e^{-x} \left (5 x+e^5 \left (9+51 x+16 x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 22, normalized size = 0.96 \begin {gather*} {\left ({\left (16 \, x^{2} + 51 \, x + 9\right )} e^{5} + 5 \, x\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 36, normalized size = 1.57 \begin {gather*} 16 \, x^{2} e^{\left (-x + 5\right )} + 5 \, x e^{\left (-x\right )} + 51 \, x e^{\left (-x + 5\right )} + 9 \, e^{\left (-x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.44, size = 26, normalized size = 1.13
method | result | size |
norman | \(\left (\left (5+51 \,{\mathrm e}^{5}\right ) x +16 x^{2} {\mathrm e}^{5}+9 \,{\mathrm e}^{5}\right ) {\mathrm e}^{-x}\) | \(26\) |
risch | \(\left (16 x^{2} {\mathrm e}^{5}+51 x \,{\mathrm e}^{5}+9 \,{\mathrm e}^{5}+5 x \right ) {\mathrm e}^{-x}\) | \(26\) |
default | \(5 x \,{\mathrm e}^{-x}-126 \,{\mathrm e}^{5} {\mathrm e}^{3} \expIntegralEi \left (1, 3+x \right )-15 \,{\mathrm e}^{5} \left (-{\mathrm e}^{-x}+3 \,{\mathrm e}^{3} \expIntegralEi \left (1, 3+x \right )\right )+67 \,{\mathrm e}^{5} \left (x \,{\mathrm e}^{-x}-2 \,{\mathrm e}^{-x}+9 \,{\mathrm e}^{3} \expIntegralEi \left (1, 3+x \right )\right )-16 \,{\mathrm e}^{5} \left (-x^{2} {\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-8 \,{\mathrm e}^{-x}+27 \,{\mathrm e}^{3} \expIntegralEi \left (1, 3+x \right )\right )\) | \(101\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -126 \, e^{8} E_{1}\left (x + 3\right ) - 15 \, e^{3} E_{1}\left (x + 3\right ) + \frac {{\left (16 \, x^{3} e^{5} + x^{2} {\left (99 \, e^{5} + 5\right )} + 3 \, x {\left (54 \, e^{5} + 5\right )}\right )} e^{\left (-x\right )}}{x + 3} - \int \frac {3 \, {\left (x {\left (51 \, e^{5} + 5\right )} + 162 \, e^{5} + 15\right )} e^{\left (-x\right )}}{x^{2} + 6 \, x + 9}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 25, normalized size = 1.09 \begin {gather*} {\mathrm {e}}^{-x}\,\left (5\,x+9\,{\mathrm {e}}^5+51\,x\,{\mathrm {e}}^5+16\,x^2\,{\mathrm {e}}^5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 26, normalized size = 1.13 \begin {gather*} \left (16 x^{2} e^{5} + 5 x + 51 x e^{5} + 9 e^{5}\right ) e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________