Optimal. Leaf size=24 \[ \frac {46}{3}+\frac {x^2}{\frac {x}{625}+\log \left (x+25 x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-390625 x-19530625 x^2+15625 x^3+\left (781250 x+19531250 x^2\right ) \log \left (x+25 x^2\right )}{x^2+25 x^3+\left (1250 x+31250 x^2\right ) \log \left (x+25 x^2\right )+(390625+9765625 x) \log ^2\left (x+25 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {625 x \left (-625-31249 x+25 x^2+1250 (1+25 x) \log (x (1+25 x))\right )}{(1+25 x) (x+625 \log (x (1+25 x)))^2} \, dx\\ &=625 \int \frac {x \left (-625-31249 x+25 x^2+1250 (1+25 x) \log (x (1+25 x))\right )}{(1+25 x) (x+625 \log (x (1+25 x)))^2} \, dx\\ &=625 \int \left (-\frac {x \left (625+31251 x+25 x^2\right )}{(1+25 x) (x+625 \log (x (1+25 x)))^2}+\frac {2 x}{x+625 \log (x (1+25 x))}\right ) \, dx\\ &=-\left (625 \int \frac {x \left (625+31251 x+25 x^2\right )}{(1+25 x) (x+625 \log (x (1+25 x)))^2} \, dx\right )+1250 \int \frac {x}{x+625 \log (x (1+25 x))} \, dx\\ &=-\left (625 \int \left (-\frac {25}{(x+625 \log (x (1+25 x)))^2}+\frac {1250 x}{(x+625 \log (x (1+25 x)))^2}+\frac {x^2}{(x+625 \log (x (1+25 x)))^2}+\frac {25}{(1+25 x) (x+625 \log (x (1+25 x)))^2}\right ) \, dx\right )+1250 \int \frac {x}{x+625 \log (x (1+25 x))} \, dx\\ &=-\left (625 \int \frac {x^2}{(x+625 \log (x (1+25 x)))^2} \, dx\right )+1250 \int \frac {x}{x+625 \log (x (1+25 x))} \, dx+15625 \int \frac {1}{(x+625 \log (x (1+25 x)))^2} \, dx-15625 \int \frac {1}{(1+25 x) (x+625 \log (x (1+25 x)))^2} \, dx-781250 \int \frac {x}{(x+625 \log (x (1+25 x)))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 19, normalized size = 0.79 \begin {gather*} \frac {625 x^2}{x+625 \log (x (1+25 x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 19, normalized size = 0.79 \begin {gather*} \frac {625 \, x^{2}}{x + 625 \, \log \left (25 \, x^{2} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.82, size = 19, normalized size = 0.79 \begin {gather*} \frac {625 \, x^{2}}{x + 625 \, \log \left (25 \, x^{2} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.83
method | result | size |
norman | \(\frac {625 x^{2}}{625 \ln \left (25 x^{2}+x \right )+x}\) | \(20\) |
risch | \(\frac {625 x^{2}}{625 \ln \left (25 x^{2}+x \right )+x}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.54, size = 21, normalized size = 0.88 \begin {gather*} \frac {625 \, x^{2}}{x + 625 \, \log \left (25 \, x + 1\right ) + 625 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.24, size = 33, normalized size = 1.38 \begin {gather*} \frac {625\,\left (2500\,x+1562500\,\ln \left (25\,x^2+x\right )+x^2\right )}{x+625\,\ln \left (25\,x^2+x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 14, normalized size = 0.58 \begin {gather*} \frac {x^{2}}{\frac {x}{625} + \log {\left (25 x^{2} + x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________