Optimal. Leaf size=26 \[ x+\log \left (\frac {e^2+x+8 x (4+x+\log (4-x))}{-5+x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {660+775 x-241 x^2-31 x^3+8 x^4+e^2 \left (24-10 x+x^2\right )+\left (160+120 x-72 x^2+8 x^3\right ) \log (4-x)}{660 x-137 x^2-39 x^3+8 x^4+e^2 \left (20-9 x+x^2\right )+\left (160 x-72 x^2+8 x^3\right ) \log (4-x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {660+775 x-241 x^2-31 x^3+8 x^4+e^2 \left (24-10 x+x^2\right )+\left (160+120 x-72 x^2+8 x^3\right ) \log (4-x)}{\left (20-9 x+x^2\right ) \left (e^2+33 x+8 x^2+8 x \log (4-x)\right )} \, dx\\ &=\int \left (\frac {-5-5 x+x^2}{(-5+x) x}+\frac {4 e^2-e^2 x-24 x^2+8 x^3}{(-4+x) x \left (e^2+33 x+8 x^2+8 x \log (4-x)\right )}\right ) \, dx\\ &=\int \frac {-5-5 x+x^2}{(-5+x) x} \, dx+\int \frac {4 e^2-e^2 x-24 x^2+8 x^3}{(-4+x) x \left (e^2+33 x+8 x^2+8 x \log (4-x)\right )} \, dx\\ &=\int \left (1+\frac {1}{5-x}+\frac {1}{x}\right ) \, dx+\int \left (\frac {8}{e^2+33 x+8 x^2+8 x \log (4-x)}+\frac {32}{(-4+x) \left (e^2+33 x+8 x^2+8 x \log (4-x)\right )}-\frac {e^2}{x \left (e^2+33 x+8 x^2+8 x \log (4-x)\right )}+\frac {8 x}{e^2+33 x+8 x^2+8 x \log (4-x)}\right ) \, dx\\ &=x-\log (5-x)+\log (x)+8 \int \frac {1}{e^2+33 x+8 x^2+8 x \log (4-x)} \, dx+8 \int \frac {x}{e^2+33 x+8 x^2+8 x \log (4-x)} \, dx+32 \int \frac {1}{(-4+x) \left (e^2+33 x+8 x^2+8 x \log (4-x)\right )} \, dx-e^2 \int \frac {1}{x \left (e^2+33 x+8 x^2+8 x \log (4-x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 32, normalized size = 1.23 \begin {gather*} x-\log (5-x)+\log \left (e^2+33 x+8 x^2+8 x \log (4-x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 35, normalized size = 1.35 \begin {gather*} x - \log \left (x - 5\right ) + \log \relax (x) + \log \left (\frac {8 \, x^{2} + 8 \, x \log \left (-x + 4\right ) + 33 \, x + e^{2}}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.54, size = 29, normalized size = 1.12 \begin {gather*} x + \log \left (8 \, x^{2} + 8 \, x \log \left (-x + 4\right ) + 33 \, x + e^{2}\right ) - \log \left (x - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 30, normalized size = 1.15
method | result | size |
norman | \(x -\ln \left (x -5\right )+\ln \left (8 x^{2}+8 \ln \left (-x +4\right ) x +{\mathrm e}^{2}+33 x \right )\) | \(30\) |
risch | \(x -\ln \left (x -5\right )+\ln \relax (x )+\ln \left (\ln \left (-x +4\right )+\frac {8 x^{2}+{\mathrm e}^{2}+33 x}{8 x}\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 36, normalized size = 1.38 \begin {gather*} x - \log \left (x - 5\right ) + \log \relax (x) + \log \left (\frac {8 \, x^{2} + 8 \, x \log \left (-x + 4\right ) + 33 \, x + e^{2}}{8 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {775\,x+\ln \left (4-x\right )\,\left (8\,x^3-72\,x^2+120\,x+160\right )+{\mathrm {e}}^2\,\left (x^2-10\,x+24\right )-241\,x^2-31\,x^3+8\,x^4+660}{660\,x+\ln \left (4-x\right )\,\left (8\,x^3-72\,x^2+160\,x\right )+{\mathrm {e}}^2\,\left (x^2-9\,x+20\right )-137\,x^2-39\,x^3+8\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.43, size = 31, normalized size = 1.19 \begin {gather*} x + \log {\relax (x )} - \log {\left (x - 5 \right )} + \log {\left (\log {\left (4 - x \right )} + \frac {8 x^{2} + 33 x + e^{2}}{8 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________