Optimal. Leaf size=30 \[ \log \left (\frac {e^{4+e^{-3+x+\left (4-x+x^2\right ) \log (4)}-4 (4+x)}}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 36, normalized size of antiderivative = 1.20, number of steps used = 7, number of rules used = 5, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {14, 43, 2287, 12, 2236} \begin {gather*} \frac {2^{2 x^2+7} \log (16) e^{x (1-\log (4))-3}}{\log (4)}-4 x-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 43
Rule 2236
Rule 2287
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-1-4 x}{x}-4^{4-x+x^2} e^{-3+x} (-1+\log (4)-x \log (16))\right ) \, dx\\ &=\int \frac {-1-4 x}{x} \, dx-\int 4^{4-x+x^2} e^{-3+x} (-1+\log (4)-x \log (16)) \, dx\\ &=\int \left (-4-\frac {1}{x}\right ) \, dx-\int 256 e^{-3+x (1-\log (4))+x^2 \log (4)} (-1+\log (4)-x \log (16)) \, dx\\ &=-4 x-\log (x)-256 \int e^{-3+x (1-\log (4))+x^2 \log (4)} (-1+\log (4)-x \log (16)) \, dx\\ &=-4 x+\frac {2^{7+2 x^2} e^{-3+x (1-\log (4))} \log (16)}{\log (4)}-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.88, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-1-4 x+e^{-3+x+\left (4-x+x^2\right ) \log (4)} \left (x+\left (-x+2 x^2\right ) \log (4)\right )}{x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 24, normalized size = 0.80 \begin {gather*} -4 \, x + e^{\left (2 \, {\left (x^{2} - x + 4\right )} \log \relax (2) + x - 3\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 32, normalized size = 1.07 \begin {gather*} -{\left (4 \, x e^{3} + e^{3} \log \relax (x) - 256 \, e^{\left (2 \, x^{2} \log \relax (2) - 2 \, x \log \relax (2) + x\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 25, normalized size = 0.83
method | result | size |
norman | \(-4 x +{\mathrm e}^{2 \left (x^{2}-x +4\right ) \ln \relax (2)+x -3}-\ln \relax (x )\) | \(25\) |
risch | \(-4 x +2^{2 x^{2}-2 x +8} {\mathrm e}^{x -3}-\ln \relax (x )\) | \(26\) |
default | \({\mathrm e}^{2 x^{2} \ln \relax (2)+\left (1-2 \ln \relax (2)\right ) x +8 \ln \relax (2)-3}+\frac {i \left (1-2 \ln \relax (2)\right ) \sqrt {\pi }\, {\mathrm e}^{8 \ln \relax (2)-3-\frac {\left (1-2 \ln \relax (2)\right )^{2}}{8 \ln \relax (2)}} \sqrt {2}\, \erf \left (i \sqrt {2}\, \sqrt {\ln \relax (2)}\, x +\frac {i \left (1-2 \ln \relax (2)\right ) \sqrt {2}}{4 \sqrt {\ln \relax (2)}}\right )}{4 \sqrt {\ln \relax (2)}}+\frac {i \sqrt {\ln \relax (2)}\, \sqrt {\pi }\, {\mathrm e}^{8 \ln \relax (2)-3-\frac {\left (1-2 \ln \relax (2)\right )^{2}}{8 \ln \relax (2)}} \sqrt {2}\, \erf \left (i \sqrt {2}\, \sqrt {\ln \relax (2)}\, x +\frac {i \left (1-2 \ln \relax (2)\right ) \sqrt {2}}{4 \sqrt {\ln \relax (2)}}\right )}{2}-\frac {i \sqrt {\pi }\, {\mathrm e}^{8 \ln \relax (2)-3-\frac {\left (1-2 \ln \relax (2)\right )^{2}}{8 \ln \relax (2)}} \sqrt {2}\, \erf \left (i \sqrt {2}\, \sqrt {\ln \relax (2)}\, x +\frac {i \left (1-2 \ln \relax (2)\right ) \sqrt {2}}{4 \sqrt {\ln \relax (2)}}\right )}{4 \sqrt {\ln \relax (2)}}-\ln \relax (x )-4 x\) | \(226\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 1.14, size = 269, normalized size = 8.97 \begin {gather*} -\frac {128 \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\sqrt {2} x \sqrt {-\log \relax (2)} + \frac {\sqrt {2} {\left (2 \, \log \relax (2) - 1\right )}}{4 \, \sqrt {-\log \relax (2)}}\right ) e^{\left (-\frac {{\left (2 \, \log \relax (2) - 1\right )}^{2}}{8 \, \log \relax (2)} - 3\right )} \log \relax (2)}{\sqrt {-\log \relax (2)}} + 64 \, \sqrt {2} {\left (\frac {\sqrt {2} \sqrt {\frac {1}{2}} \sqrt {\pi } {\left (4 \, x \log \relax (2) - 2 \, \log \relax (2) + 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {\frac {1}{2}} \sqrt {-\frac {{\left (4 \, x \log \relax (2) - 2 \, \log \relax (2) + 1\right )}^{2}}{\log \relax (2)}}\right ) - 1\right )} {\left (2 \, \log \relax (2) - 1\right )}}{\sqrt {-\frac {{\left (4 \, x \log \relax (2) - 2 \, \log \relax (2) + 1\right )}^{2}}{\log \relax (2)}} \log \relax (2)^{\frac {3}{2}}} + \frac {2 \, \sqrt {2} e^{\left (\frac {{\left (4 \, x \log \relax (2) - 2 \, \log \relax (2) + 1\right )}^{2}}{8 \, \log \relax (2)}\right )}}{\sqrt {\log \relax (2)}}\right )} e^{\left (-\frac {{\left (2 \, \log \relax (2) - 1\right )}^{2}}{8 \, \log \relax (2)} - 3\right )} \sqrt {\log \relax (2)} + \frac {64 \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\sqrt {2} x \sqrt {-\log \relax (2)} + \frac {\sqrt {2} {\left (2 \, \log \relax (2) - 1\right )}}{4 \, \sqrt {-\log \relax (2)}}\right ) e^{\left (-\frac {{\left (2 \, \log \relax (2) - 1\right )}^{2}}{8 \, \log \relax (2)} - 3\right )}}{\sqrt {-\log \relax (2)}} - 4 \, x - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.07, size = 28, normalized size = 0.93 \begin {gather*} \frac {256\,2^{2\,x^2}\,{\mathrm {e}}^{-3}\,{\mathrm {e}}^x}{2^{2\,x}}-\ln \relax (x)-4\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 24, normalized size = 0.80 \begin {gather*} - 4 x + e^{x + \left (2 x^{2} - 2 x + 8\right ) \log {\relax (2 )} - 3} - \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________