Optimal. Leaf size=18 \[ -1+2 x \log \left (\frac {1}{4} e^{-8+2 x} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 16, normalized size of antiderivative = 0.89, number of steps used = 3, number of rules used = 1, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {2548} \begin {gather*} 2 x \log \left (\frac {1}{4} e^{2 x-8} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2548
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=2 x+2 x^2+2 \int \log \left (\frac {1}{4} e^{-8+2 x} x\right ) \, dx\\ &=2 x+2 x^2+2 x \log \left (\frac {1}{4} e^{-8+2 x} x\right )-2 \int (1+2 x) \, dx\\ &=2 x \log \left (\frac {1}{4} e^{-8+2 x} x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 0.89 \begin {gather*} 2 x \log \left (\frac {1}{4} e^{-8+2 x} x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 13, normalized size = 0.72 \begin {gather*} 2 \, x \log \left (\frac {1}{4} \, x e^{\left (2 \, x - 8\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 19, normalized size = 1.06 \begin {gather*} 4 \, x^{2} - 4 \, x \log \relax (2) + 2 \, x \log \relax (x) - 16 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 14, normalized size = 0.78
method | result | size |
norman | \(2 x \ln \left (\frac {x \,{\mathrm e}^{2 x -8}}{4}\right )\) | \(14\) |
default | \(2 x \ln \left (\frac {x \,{\mathrm e}^{2 x -8}}{4}\right )+40\) | \(16\) |
risch | \(4 x \ln \left ({\mathrm e}^{x -4}\right )+2 x \ln \relax (x )-i \pi \mathrm {csgn}\left (i {\mathrm e}^{2 x -8}\right )^{3} x -i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x -8}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{2 x -8}\right ) x +i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 x -8}\right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{2 x -8}\right )^{2} x -i \pi \mathrm {csgn}\left (i x \,{\mathrm e}^{2 x -8}\right )^{3} x +i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \,{\mathrm e}^{2 x -8}\right )^{2} x +2 i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{x -4}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x -8}\right )^{2} x -i \pi \mathrm {csgn}\left (i {\mathrm e}^{x -4}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x -8}\right ) x -4 x \ln \relax (2)\) | \(187\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 13, normalized size = 0.72 \begin {gather*} 2 \, x \log \left (\frac {1}{4} \, x e^{\left (2 \, x - 8\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.37, size = 12, normalized size = 0.67 \begin {gather*} 2\,x\,\left (2\,x+\ln \left (\frac {x}{4}\right )-8\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 14, normalized size = 0.78 \begin {gather*} 2 x \log {\left (\frac {x e^{2 x - 8}}{4} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________