Optimal. Leaf size=19 \[ 2^{-4 e^{-x}} \sqrt [5]{\log (x)}+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 1.38, antiderivative size = 19, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {12, 6742, 2288} \begin {gather*} \log (x)+2^{-4 e^{-x}} \sqrt [5]{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{-x} \left (5 e^x \log (x)+e^{\frac {1}{5} e^{-x} \left (-20 \log (2)+e^x \log (\log (x))\right )} \left (e^x+20 x \log (2) \log (x)\right )\right )}{x \log (x)} \, dx\\ &=\frac {1}{5} \int \left (\frac {5}{x}+\frac {2^{-4 e^{-x}} e^{-x} \left (e^x+20 x \log (2) \log (x)\right )}{x \log ^{\frac {4}{5}}(x)}\right ) \, dx\\ &=\log (x)+\frac {1}{5} \int \frac {2^{-4 e^{-x}} e^{-x} \left (e^x+20 x \log (2) \log (x)\right )}{x \log ^{\frac {4}{5}}(x)} \, dx\\ &=2^{-4 e^{-x}} \sqrt [5]{\log (x)}+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 33, normalized size = 1.74 \begin {gather*} \frac {1}{5} \left (\frac {2^{1-4 e^{-x}} \log (32) \sqrt [5]{\log (x)}}{\log (4)}+5 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 21, normalized size = 1.11 \begin {gather*} e^{\left (\frac {1}{5} \, {\left (e^{x} \log \left (\log \relax (x)\right ) - 20 \, \log \relax (2)\right )} e^{\left (-x\right )}\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (20 \, x \log \relax (2) \log \relax (x) + e^{x}\right )} e^{\left (\frac {1}{5} \, {\left (e^{x} \log \left (\log \relax (x)\right ) - 20 \, \log \relax (2)\right )} e^{\left (-x\right )}\right )} + 5 \, e^{x} \log \relax (x)\right )} e^{\left (-x\right )}}{5 \, x \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 15, normalized size = 0.79
method | result | size |
risch | \(\ln \relax (x )+\ln \relax (x )^{\frac {1}{5}} \left (\frac {1}{16}\right )^{{\mathrm e}^{-x}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{5} \, \int \frac {{\left (20 \, x \log \relax (2) \log \relax (x) + e^{x}\right )} e^{\left (-4 \, e^{\left (-x\right )} \log \relax (2) - x\right )}}{x \log \relax (x)^{\frac {4}{5}}}\,{d x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.50, size = 18, normalized size = 0.95 \begin {gather*} \ln \relax (x)+\frac {{\ln \relax (x)}^{1/5}}{2^{4\,{\mathrm {e}}^{-x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 22, normalized size = 1.16 \begin {gather*} e^{\left (\frac {e^{x} \log {\left (\log {\relax (x )} \right )}}{5} - 4 \log {\relax (2 )}\right ) e^{- x}} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________