Optimal. Leaf size=27 \[ -3+e^x \left (2+x \left (\frac {e^4}{x (2+x)^2}-\log (7)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 36, normalized size of antiderivative = 1.33, number of steps used = 11, number of rules used = 6, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {6, 2199, 2177, 2178, 2176, 2194} \begin {gather*} \frac {e^{x+4}}{(x+2)^2}-e^x (x+2) \log (7)+e^x (2+\log (7))+e^x \log (7) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (16+\left (24+e^4\right ) x+12 x^2+2 x^3+\left (-8-20 x-18 x^2-7 x^3-x^4\right ) \log (7)\right )}{8+12 x+6 x^2+x^3} \, dx\\ &=\int \left (-\frac {2 e^{4+x}}{(2+x)^3}+\frac {e^{4+x}}{(2+x)^2}-e^x (2+x) \log (7)+e^x (2+\log (7))\right ) \, dx\\ &=-\left (2 \int \frac {e^{4+x}}{(2+x)^3} \, dx\right )-\log (7) \int e^x (2+x) \, dx+(2+\log (7)) \int e^x \, dx+\int \frac {e^{4+x}}{(2+x)^2} \, dx\\ &=\frac {e^{4+x}}{(2+x)^2}-\frac {e^{4+x}}{2+x}-e^x (2+x) \log (7)+e^x (2+\log (7))+\log (7) \int e^x \, dx-\int \frac {e^{4+x}}{(2+x)^2} \, dx+\int \frac {e^{4+x}}{2+x} \, dx\\ &=\frac {e^{4+x}}{(2+x)^2}+e^2 \text {Ei}(2+x)+e^x \log (7)-e^x (2+x) \log (7)+e^x (2+\log (7))-\int \frac {e^{4+x}}{2+x} \, dx\\ &=\frac {e^{4+x}}{(2+x)^2}+e^x \log (7)-e^x (2+x) \log (7)+e^x (2+\log (7))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.54, size = 37, normalized size = 1.37 \begin {gather*} -\frac {e^x \left (-8-e^4+x^3 \log (7)+x (-8+\log (2401))+x^2 (-2+\log (2401))\right )}{(2+x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 41, normalized size = 1.52 \begin {gather*} \frac {{\left (2 \, x^{2} - {\left (x^{3} + 4 \, x^{2} + 4 \, x\right )} \log \relax (7) + 8 \, x + e^{4} + 8\right )} e^{x}}{x^{2} + 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 59, normalized size = 2.19 \begin {gather*} -\frac {x^{3} e^{x} \log \relax (7) + 4 \, x^{2} e^{x} \log \relax (7) - 2 \, x^{2} e^{x} + 4 \, x e^{x} \log \relax (7) - 8 \, x e^{x} - e^{\left (x + 4\right )} - 8 \, e^{x}}{x^{2} + 4 \, x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 0.93
method | result | size |
default | \(\frac {{\mathrm e}^{4} {\mathrm e}^{x}}{\left (2+x \right )^{2}}+2 \,{\mathrm e}^{x}-\ln \relax (7) {\mathrm e}^{x} x\) | \(25\) |
risch | \(\frac {\left (-\ln \relax (7) x^{3}-4 x^{2} \ln \relax (7)+{\mathrm e}^{4}-4 x \ln \relax (7)+2 x^{2}+8 x +8\right ) {\mathrm e}^{x}}{\left (2+x \right )^{2}}\) | \(40\) |
gosper | \(\frac {\left (-\ln \relax (7) x^{3}-4 x^{2} \ln \relax (7)+{\mathrm e}^{4}-4 x \ln \relax (7)+2 x^{2}+8 x +8\right ) {\mathrm e}^{x}}{x^{2}+4 x +4}\) | \(47\) |
norman | \(\frac {\left ({\mathrm e}^{4}+8\right ) {\mathrm e}^{x}+\left (-4 \ln \relax (7)+2\right ) x^{2} {\mathrm e}^{x}+\left (-4 \ln \relax (7)+8\right ) x \,{\mathrm e}^{x}-\ln \relax (7) x^{3} {\mathrm e}^{x}}{\left (2+x \right )^{2}}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {{\left (x^{4} \log \relax (7) + 2 \, x^{3} {\left (3 \, \log \relax (7) - 1\right )} + 12 \, x^{2} {\left (\log \relax (7) - 1\right )} - x {\left (e^{4} + 12 \, \log \relax (7)\right )}\right )} e^{x}}{x^{3} + 6 \, x^{2} + 12 \, x + 8} - \frac {20 \, e^{x} \log \relax (7)}{x^{2} + 4 \, x + 4} + \frac {8 \, e^{\left (-2\right )} E_{3}\left (-x - 2\right ) \log \relax (7)}{{\left (x + 2\right )}^{2}} + \frac {24 \, e^{x}}{x^{2} + 4 \, x + 4} - \frac {16 \, e^{\left (-2\right )} E_{3}\left (-x - 2\right )}{{\left (x + 2\right )}^{2}} + \int \frac {2 \, {\left (x {\left (e^{4} + 24 \, \log \relax (7) - 24\right )} - e^{4} - 12 \, \log \relax (7)\right )} e^{x}}{x^{4} + 8 \, x^{3} + 24 \, x^{2} + 32 \, x + 16}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.12, size = 21, normalized size = 0.78 \begin {gather*} \frac {{\mathrm {e}}^{x+4}}{{\left (x+2\right )}^2}-{\mathrm {e}}^x\,\left (x\,\ln \relax (7)-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.20, size = 46, normalized size = 1.70 \begin {gather*} \frac {\left (- x^{3} \log {\relax (7 )} - 4 x^{2} \log {\relax (7 )} + 2 x^{2} - 4 x \log {\relax (7 )} + 8 x + 8 + e^{4}\right ) e^{x}}{x^{2} + 4 x + 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________