Optimal. Leaf size=27 \[ \frac {3 \log \left (e^{e^{\frac {1}{2 x \log (x)}}}-x\right )}{4 e^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.65, antiderivative size = 27, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 86, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {6741, 12, 6684} \begin {gather*} \frac {3 \log \left (e^{e^{\frac {1}{2 x \log (x)}}}-x\right )}{4 e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6684
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{e^{\frac {1}{2 x \log (x)}}+\frac {1}{2 x \log (x)}} (-3-3 \log (x))-6 x^2 \log ^2(x)}{8 e^4 \left (e^{e^{\frac {1}{2 x \log (x)}}}-x\right ) x^2 \log ^2(x)} \, dx\\ &=\frac {\int \frac {e^{e^{\frac {1}{2 x \log (x)}}+\frac {1}{2 x \log (x)}} (-3-3 \log (x))-6 x^2 \log ^2(x)}{\left (e^{e^{\frac {1}{2 x \log (x)}}}-x\right ) x^2 \log ^2(x)} \, dx}{8 e^4}\\ &=\frac {3 \log \left (e^{e^{\frac {1}{2 x \log (x)}}}-x\right )}{4 e^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.53, size = 27, normalized size = 1.00 \begin {gather*} \frac {3 \log \left (e^{e^{\frac {1}{2 x \log (x)}}}-x\right )}{4 e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 24, normalized size = 0.89 \begin {gather*} \frac {3}{4} \, e^{\left (-4\right )} \log \left (-x e^{4} + e^{\left (e^{\left (\frac {1}{2 \, x \log \relax (x)}\right )} + 4\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 21, normalized size = 0.78
method | result | size |
risch | \(\frac {3 \,{\mathrm e}^{-4} \ln \left ({\mathrm e}^{{\mathrm e}^{\frac {1}{2 x \ln \relax (x )}}}-x \right )}{4}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.53, size = 20, normalized size = 0.74 \begin {gather*} \frac {3\,{\mathrm {e}}^{-4}\,\ln \left ({\mathrm {e}}^{{\mathrm {e}}^{\frac {1}{2\,x\,\ln \relax (x)}}}-x\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.73, size = 20, normalized size = 0.74 \begin {gather*} \frac {3 \log {\left (- x + e^{e^{\frac {1}{2 x \log {\relax (x )}}}} \right )}}{4 e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________