Optimal. Leaf size=17 \[ -\frac {2}{5}-x+e^{-x} (2+e) x \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 14, normalized size of antiderivative = 0.82, number of steps used = 5, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {6742, 2194, 2176} \begin {gather*} (2+e) e^{-x} x-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+2 \left (1+\frac {e}{2}\right ) e^{-x}-2 \left (1+\frac {e}{2}\right ) e^{-x} x\right ) \, dx\\ &=-x+(2+e) \int e^{-x} \, dx-(2+e) \int e^{-x} x \, dx\\ &=-e^{-x} (2+e)-x+e^{-x} (2+e) x-(2+e) \int e^{-x} \, dx\\ &=-x+e^{-x} (2+e) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 14, normalized size = 0.82 \begin {gather*} -x+e^{-x} (2+e) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 18, normalized size = 1.06 \begin {gather*} {\left (x e - x e^{x} + 2 \, x\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 19, normalized size = 1.12 \begin {gather*} 2 \, x e^{\left (-x\right )} + x e^{\left (-x + 1\right )} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.88
method | result | size |
risch | \(-x +\left ({\mathrm e}+2\right ) {\mathrm e}^{-x} x\) | \(15\) |
norman | \(\left (x \left ({\mathrm e}+2\right )-{\mathrm e}^{x} x \right ) {\mathrm e}^{-x}\) | \(18\) |
default | \(-x -{\mathrm e} \,{\mathrm e}^{-x}+2 x \,{\mathrm e}^{-x}-{\mathrm e} \left (-x \,{\mathrm e}^{-x}-{\mathrm e}^{-x}\right )\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.54, size = 39, normalized size = 2.29 \begin {gather*} {\left (x e + e\right )} e^{\left (-x\right )} + 2 \, {\left (x + 1\right )} e^{\left (-x\right )} - x - 2 \, e^{\left (-x\right )} - e^{\left (-x + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 19, normalized size = 1.12 \begin {gather*} 2\,x\,{\mathrm {e}}^{-x}-x+x\,{\mathrm {e}}^{-x}\,\mathrm {e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 12, normalized size = 0.71 \begin {gather*} - x + \left (2 x + e x\right ) e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________