Optimal. Leaf size=32 \[ \frac {2}{(-5+x) (-1+x)+\frac {2}{-x-e^{3-e^x} x}} \]
________________________________________________________________________________________
Rubi [F] time = 9.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 e^x} \left (-4+12 x^2-4 x^3\right )+e^6 \left (12 x^2-4 x^3\right )+e^{e^x} \left (4 e^{3+x} x+e^3 \left (-4+24 x^2-8 x^3\right )\right )}{e^{2 e^x} \left (4-20 x+49 x^2-64 x^3+46 x^4-12 x^5+x^6\right )+e^6 \left (25 x^2-60 x^3+46 x^4-12 x^5+x^6\right )+e^{3+e^x} \left (-20 x+74 x^2-124 x^3+92 x^4-24 x^5+2 x^6\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (e^{3+e^x+x} x-e^6 (-3+x) x^2-e^{2 e^x} \left (1-3 x^2+x^3\right )-e^{3+e^x} \left (1-6 x^2+2 x^3\right )\right )}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx\\ &=4 \int \frac {e^{3+e^x+x} x-e^6 (-3+x) x^2-e^{2 e^x} \left (1-3 x^2+x^3\right )-e^{3+e^x} \left (1-6 x^2+2 x^3\right )}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx\\ &=4 \int \left (\frac {e^{3+e^x+x} x}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}-\frac {e^6 (-3+x) x^2}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}-\frac {e^{2 e^x} \left (1-3 x^2+x^3\right )}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}-\frac {e^{3+e^x} \left (1-6 x^2+2 x^3\right )}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}\right ) \, dx\\ &=4 \int \frac {e^{3+e^x+x} x}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx-4 \int \frac {e^{2 e^x} \left (1-3 x^2+x^3\right )}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx-4 \int \frac {e^{3+e^x} \left (1-6 x^2+2 x^3\right )}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx-\left (4 e^6\right ) \int \frac {(-3+x) x^2}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx\\ &=4 \int \frac {e^{3+e^x+x} x}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx-4 \int \frac {e^{2 e^x} \left (1-3 x^2+x^3\right )}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx-4 \int \frac {e^{3+e^x} \left (1-6 x^2+2 x^3\right )}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx-\left (4 e^6\right ) \int \frac {(-3+x) x^2}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx\\ &=4 \int \frac {e^{3+e^x+x} x}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx-4 \int \left (\frac {e^{2 e^x}}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}-\frac {3 e^{2 e^x} x^2}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}+\frac {e^{2 e^x} x^3}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}\right ) \, dx-4 \int \left (\frac {e^{3+e^x}}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}-\frac {6 e^{3+e^x} x^2}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}+\frac {2 e^{3+e^x} x^3}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}\right ) \, dx-\left (4 e^6\right ) \int \left (-\frac {3 x^2}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}+\frac {x^3}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2}\right ) \, dx\\ &=-\left (4 \int \frac {e^{2 e^x}}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx\right )-4 \int \frac {e^{3+e^x}}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx-4 \int \frac {e^{2 e^x} x^3}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx+4 \int \frac {e^{3+e^x+x} x}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx-8 \int \frac {e^{3+e^x} x^3}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx+12 \int \frac {e^{2 e^x} x^2}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx+24 \int \frac {e^{3+e^x} x^2}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx-\left (4 e^6\right ) \int \frac {x^3}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx+\left (12 e^6\right ) \int \frac {x^2}{\left (-2 e^{e^x}+5 e^3 x+5 e^{e^x} x-6 e^3 x^2-6 e^{e^x} x^2+e^3 x^3+e^{e^x} x^3\right )^2} \, dx\\ &=-\left (4 \int \frac {e^{2 e^x}}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx\right )-4 \int \frac {e^{3+e^x}}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx+4 \int \frac {e^{3+e^x+x} x}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx-4 \int \frac {e^{2 e^x} x^3}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx-8 \int \frac {e^{3+e^x} x^3}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx+12 \int \frac {e^{2 e^x} x^2}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx+24 \int \frac {e^{3+e^x} x^2}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx-\left (4 e^6\right ) \int \frac {x^3}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx+\left (12 e^6\right ) \int \frac {x^2}{\left (e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 47, normalized size = 1.47 \begin {gather*} \frac {2 \left (e^3+e^{e^x}\right ) x}{e^3 x \left (5-6 x+x^2\right )+e^{e^x} \left (-2+5 x-6 x^2+x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.47, size = 67, normalized size = 2.09 \begin {gather*} \frac {2 \, {\left (x e^{6} + x e^{\left ({\left (3 \, e^{3} + e^{\left (x + 3\right )}\right )} e^{\left (-3\right )}\right )}\right )}}{{\left (x^{3} - 6 \, x^{2} + 5 \, x\right )} e^{6} + {\left (x^{3} - 6 \, x^{2} + 5 \, x - 2\right )} e^{\left ({\left (3 \, e^{3} + e^{\left (x + 3\right )}\right )} e^{\left (-3\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.57, size = 59, normalized size = 1.84 \begin {gather*} \frac {2 \, {\left (x e^{3} + x e^{\left (e^{x}\right )}\right )}}{x^{3} e^{3} + x^{3} e^{\left (e^{x}\right )} - 6 \, x^{2} e^{3} - 6 \, x^{2} e^{\left (e^{x}\right )} + 5 \, x e^{3} + 5 \, x e^{\left (e^{x}\right )} - 2 \, e^{\left (e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 87, normalized size = 2.72
method | result | size |
risch | \(\frac {2 x}{x^{3}-6 x^{2}+5 x -2}-\frac {4 x \,{\mathrm e}^{3}}{\left (x^{3}-6 x^{2}+5 x -2\right ) \left (x^{3} {\mathrm e}^{3}+x^{3} {\mathrm e}^{{\mathrm e}^{x}}-6 x^{2} {\mathrm e}^{3}-6 \,{\mathrm e}^{{\mathrm e}^{x}} x^{2}+5 x \,{\mathrm e}^{3}+5 x \,{\mathrm e}^{{\mathrm e}^{x}}-2 \,{\mathrm e}^{{\mathrm e}^{x}}\right )}\) | \(87\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.63, size = 50, normalized size = 1.56 \begin {gather*} \frac {2 \, {\left (x e^{3} + x e^{\left (e^{x}\right )}\right )}}{x^{3} e^{3} - 6 \, x^{2} e^{3} + 5 \, x e^{3} + {\left (x^{3} - 6 \, x^{2} + 5 \, x - 2\right )} e^{\left (e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{{\mathrm {e}}^x}\,\left ({\mathrm {e}}^3\,\left (8\,x^3-24\,x^2+4\right )-4\,x\,{\mathrm {e}}^3\,{\mathrm {e}}^x\right )-{\mathrm {e}}^6\,\left (12\,x^2-4\,x^3\right )+{\mathrm {e}}^{2\,{\mathrm {e}}^x}\,\left (4\,x^3-12\,x^2+4\right )}{{\mathrm {e}}^6\,\left (x^6-12\,x^5+46\,x^4-60\,x^3+25\,x^2\right )+{\mathrm {e}}^{2\,{\mathrm {e}}^x}\,\left (x^6-12\,x^5+46\,x^4-64\,x^3+49\,x^2-20\,x+4\right )-{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^3\,\left (-2\,x^6+24\,x^5-92\,x^4+124\,x^3-74\,x^2+20\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.62, size = 104, normalized size = 3.25 \begin {gather*} - \frac {4 x e^{3}}{x^{6} e^{3} - 12 x^{5} e^{3} + 46 x^{4} e^{3} - 62 x^{3} e^{3} + 37 x^{2} e^{3} - 10 x e^{3} + \left (x^{6} - 12 x^{5} + 46 x^{4} - 64 x^{3} + 49 x^{2} - 20 x + 4\right ) e^{e^{x}}} + \frac {2 x}{x^{3} - 6 x^{2} + 5 x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________