Optimal. Leaf size=29 \[ 5+\left (x+\left (4+e^2+x\right )^2\right )^2 \left (2-x+x^2+x \log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.49, antiderivative size = 711, normalized size of antiderivative = 24.52, number of steps used = 27, number of rules used = 5, integrand size = 345, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {2356, 2295, 2304, 6, 2305} \begin {gather*} x^8+4 e^2 x^7+16 x^7+2 x^7 \log (x)-\frac {1}{18} \left (103+24 e^2\right ) x^6+6 e^4 x^6+\frac {136 e^2 x^6}{3}+\frac {1579 x^6}{18}+x^6 \log ^2(x)+\frac {1}{3} \left (103+24 e^2\right ) x^6 \log (x)-\frac {1}{3} x^6 \log (x)-\frac {2}{25} \left (503+244 e^2+30 e^4\right ) x^5+\frac {4}{25} \left (9+2 e^2\right ) x^5+4 e^6 x^5+\frac {202 e^4 x^5}{5}+\frac {716 e^2 x^5}{5}+\frac {934 x^5}{5}+2 \left (9+2 e^2\right ) x^5 \log ^2(x)+\frac {2}{5} \left (503+244 e^2+30 e^4\right ) x^5 \log (x)-\frac {4}{5} \left (9+2 e^2\right ) x^5 \log (x)-\frac {1}{8} \left (957+708 e^2+182 e^4+16 e^6\right ) x^4+\frac {1}{8} \left (113+52 e^2+6 e^4\right ) x^4+e^8 x^4+10 e^6 x^4+48 e^4 x^4+166 e^2 x^4+\frac {565 x^4}{2}+\left (113+52 e^2+6 e^4\right ) x^4 \log ^2(x)+\frac {1}{2} \left (957+708 e^2+182 e^4+16 e^6\right ) x^4 \log (x)-\frac {1}{2} \left (113+52 e^2+6 e^4\right ) x^4 \log (x)-\frac {2}{9} \left (870+664 e^2+224 e^4+40 e^6+3 e^8\right ) x^3+\frac {4}{9} \left (4+e^2\right )^2 \left (9+2 e^2\right ) x^3-\frac {4 e^8 x^3}{3}-4 e^6 x^3+\frac {218 e^4 x^3}{3}+\frac {1312 e^2 x^3}{3}+\frac {2032 x^3}{3}+2 \left (4+e^2\right )^2 \left (9+2 e^2\right ) x^3 \log ^2(x)+\frac {2}{3} \left (870+664 e^2+224 e^4+40 e^6+3 e^8\right ) x^3 \log (x)-\frac {4}{3} \left (4+e^2\right )^2 \left (9+2 e^2\right ) x^3 \log (x)-\frac {1}{2} \left (4+e^2\right )^2 \left (56+8 e^2-e^4\right ) x^2+\frac {1}{2} \left (4+e^2\right )^4 x^2+4 e^8 x^2+56 e^6 x^2+308 e^4 x^2+816 e^2 x^2+900 x^2+\left (4+e^2\right )^4 x^2 \log ^2(x)+\left (4+e^2\right )^2 \left (56+8 e^2-e^4\right ) x^2 \log (x)-\left (4+e^2\right )^4 x^2 \log (x)-4 \left (4+e^2\right )^4 x+16 e^6 x+200 e^4 x+832 e^2 x+1152 x+4 \left (4+e^2\right )^4 x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2295
Rule 2304
Rule 2305
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=1152 x+900 x^2+\frac {2032 x^3}{3}+\frac {565 x^4}{2}+\frac {934 x^5}{5}+\frac {263 x^6}{3}+\frac {114 x^7}{7}+x^8+e^2 \int \left (832+1632 x+1312 x^2+664 x^3+716 x^4+272 x^5+28 x^6\right ) \, dx+e^4 \int \left (200+616 x+218 x^2+192 x^3+202 x^4+36 x^5\right ) \, dx+e^6 \int \left (16+112 x-12 x^2+40 x^3+20 x^4\right ) \, dx+e^8 \int \left (8 x-4 x^2+4 x^3\right ) \, dx+\int \left (1024+1792 x+1740 x^2+1914 x^3+1006 x^4+206 x^5+14 x^6+e^8 \left (4-2 x+6 x^2\right )+e^6 \left (64+80 x^2+32 x^3\right )+e^4 \left (384+208 x+448 x^2+364 x^3+60 x^4\right )+e^2 \left (1024+1152 x+1328 x^2+1416 x^3+488 x^4+48 x^5\right )\right ) \log (x) \, dx+\int \left (512 x+2 e^8 x+864 x^2+452 x^3+90 x^4+6 x^5+e^6 \left (32 x+12 x^2\right )+e^4 \left (192 x+150 x^2+24 x^3\right )+e^2 \left (512 x+624 x^2+208 x^3+20 x^4\right )\right ) \log ^2(x) \, dx\\ &=1152 x+832 e^2 x+200 e^4 x+16 e^6 x+900 x^2+816 e^2 x^2+308 e^4 x^2+56 e^6 x^2+4 e^8 x^2+\frac {2032 x^3}{3}+\frac {1312 e^2 x^3}{3}+\frac {218 e^4 x^3}{3}-4 e^6 x^3-\frac {4 e^8 x^3}{3}+\frac {565 x^4}{2}+166 e^2 x^4+48 e^4 x^4+10 e^6 x^4+e^8 x^4+\frac {934 x^5}{5}+\frac {716 e^2 x^5}{5}+\frac {202 e^4 x^5}{5}+4 e^6 x^5+\frac {263 x^6}{3}+\frac {136 e^2 x^6}{3}+6 e^4 x^6+\frac {114 x^7}{7}+4 e^2 x^7+x^8+\int \left (\left (512+2 e^8\right ) x+864 x^2+452 x^3+90 x^4+6 x^5+e^6 \left (32 x+12 x^2\right )+e^4 \left (192 x+150 x^2+24 x^3\right )+e^2 \left (512 x+624 x^2+208 x^3+20 x^4\right )\right ) \log ^2(x) \, dx+\int \left (4 \left (4+e^2\right )^4 \log (x)-2 \left (4+e^2\right )^2 \left (-56-8 e^2+e^4\right ) x \log (x)+2 \left (870+664 e^2+224 e^4+40 e^6+3 e^8\right ) x^2 \log (x)+2 \left (957+708 e^2+182 e^4+16 e^6\right ) x^3 \log (x)+2 \left (503+244 e^2+30 e^4\right ) x^4 \log (x)+2 \left (103+24 e^2\right ) x^5 \log (x)+14 x^6 \log (x)\right ) \, dx\\ &=1152 x+832 e^2 x+200 e^4 x+16 e^6 x+900 x^2+816 e^2 x^2+308 e^4 x^2+56 e^6 x^2+4 e^8 x^2+\frac {2032 x^3}{3}+\frac {1312 e^2 x^3}{3}+\frac {218 e^4 x^3}{3}-4 e^6 x^3-\frac {4 e^8 x^3}{3}+\frac {565 x^4}{2}+166 e^2 x^4+48 e^4 x^4+10 e^6 x^4+e^8 x^4+\frac {934 x^5}{5}+\frac {716 e^2 x^5}{5}+\frac {202 e^4 x^5}{5}+4 e^6 x^5+\frac {263 x^6}{3}+\frac {136 e^2 x^6}{3}+6 e^4 x^6+\frac {114 x^7}{7}+4 e^2 x^7+x^8+14 \int x^6 \log (x) \, dx+\left (4 \left (4+e^2\right )^4\right ) \int \log (x) \, dx+\left (2 \left (103+24 e^2\right )\right ) \int x^5 \log (x) \, dx+\left (2 \left (4+e^2\right )^2 \left (56+8 e^2-e^4\right )\right ) \int x \log (x) \, dx+\left (2 \left (503+244 e^2+30 e^4\right )\right ) \int x^4 \log (x) \, dx+\left (2 \left (957+708 e^2+182 e^4+16 e^6\right )\right ) \int x^3 \log (x) \, dx+\left (2 \left (870+664 e^2+224 e^4+40 e^6+3 e^8\right )\right ) \int x^2 \log (x) \, dx+\int \left (2 \left (4+e^2\right )^4 x \log ^2(x)+6 \left (4+e^2\right )^2 \left (9+2 e^2\right ) x^2 \log ^2(x)+4 \left (113+52 e^2+6 e^4\right ) x^3 \log ^2(x)+10 \left (9+2 e^2\right ) x^4 \log ^2(x)+6 x^5 \log ^2(x)\right ) \, dx\\ &=1152 x+832 e^2 x+200 e^4 x+16 e^6 x-4 \left (4+e^2\right )^4 x+900 x^2+816 e^2 x^2+308 e^4 x^2+56 e^6 x^2+4 e^8 x^2-\frac {1}{2} \left (4+e^2\right )^2 \left (56+8 e^2-e^4\right ) x^2+\frac {2032 x^3}{3}+\frac {1312 e^2 x^3}{3}+\frac {218 e^4 x^3}{3}-4 e^6 x^3-\frac {4 e^8 x^3}{3}-\frac {2}{9} \left (870+664 e^2+224 e^4+40 e^6+3 e^8\right ) x^3+\frac {565 x^4}{2}+166 e^2 x^4+48 e^4 x^4+10 e^6 x^4+e^8 x^4-\frac {1}{8} \left (957+708 e^2+182 e^4+16 e^6\right ) x^4+\frac {934 x^5}{5}+\frac {716 e^2 x^5}{5}+\frac {202 e^4 x^5}{5}+4 e^6 x^5-\frac {2}{25} \left (503+244 e^2+30 e^4\right ) x^5+\frac {263 x^6}{3}+\frac {136 e^2 x^6}{3}+6 e^4 x^6-\frac {1}{18} \left (103+24 e^2\right ) x^6+16 x^7+4 e^2 x^7+x^8+4 \left (4+e^2\right )^4 x \log (x)+\left (4+e^2\right )^2 \left (56+8 e^2-e^4\right ) x^2 \log (x)+\frac {2}{3} \left (870+664 e^2+224 e^4+40 e^6+3 e^8\right ) x^3 \log (x)+\frac {1}{2} \left (957+708 e^2+182 e^4+16 e^6\right ) x^4 \log (x)+\frac {2}{5} \left (503+244 e^2+30 e^4\right ) x^5 \log (x)+\frac {1}{3} \left (103+24 e^2\right ) x^6 \log (x)+2 x^7 \log (x)+6 \int x^5 \log ^2(x) \, dx+\left (2 \left (4+e^2\right )^4\right ) \int x \log ^2(x) \, dx+\left (10 \left (9+2 e^2\right )\right ) \int x^4 \log ^2(x) \, dx+\left (6 \left (4+e^2\right )^2 \left (9+2 e^2\right )\right ) \int x^2 \log ^2(x) \, dx+\left (4 \left (113+52 e^2+6 e^4\right )\right ) \int x^3 \log ^2(x) \, dx\\ &=1152 x+832 e^2 x+200 e^4 x+16 e^6 x-4 \left (4+e^2\right )^4 x+900 x^2+816 e^2 x^2+308 e^4 x^2+56 e^6 x^2+4 e^8 x^2-\frac {1}{2} \left (4+e^2\right )^2 \left (56+8 e^2-e^4\right ) x^2+\frac {2032 x^3}{3}+\frac {1312 e^2 x^3}{3}+\frac {218 e^4 x^3}{3}-4 e^6 x^3-\frac {4 e^8 x^3}{3}-\frac {2}{9} \left (870+664 e^2+224 e^4+40 e^6+3 e^8\right ) x^3+\frac {565 x^4}{2}+166 e^2 x^4+48 e^4 x^4+10 e^6 x^4+e^8 x^4-\frac {1}{8} \left (957+708 e^2+182 e^4+16 e^6\right ) x^4+\frac {934 x^5}{5}+\frac {716 e^2 x^5}{5}+\frac {202 e^4 x^5}{5}+4 e^6 x^5-\frac {2}{25} \left (503+244 e^2+30 e^4\right ) x^5+\frac {263 x^6}{3}+\frac {136 e^2 x^6}{3}+6 e^4 x^6-\frac {1}{18} \left (103+24 e^2\right ) x^6+16 x^7+4 e^2 x^7+x^8+4 \left (4+e^2\right )^4 x \log (x)+\left (4+e^2\right )^2 \left (56+8 e^2-e^4\right ) x^2 \log (x)+\frac {2}{3} \left (870+664 e^2+224 e^4+40 e^6+3 e^8\right ) x^3 \log (x)+\frac {1}{2} \left (957+708 e^2+182 e^4+16 e^6\right ) x^4 \log (x)+\frac {2}{5} \left (503+244 e^2+30 e^4\right ) x^5 \log (x)+\frac {1}{3} \left (103+24 e^2\right ) x^6 \log (x)+2 x^7 \log (x)+\left (4+e^2\right )^4 x^2 \log ^2(x)+2 \left (4+e^2\right )^2 \left (9+2 e^2\right ) x^3 \log ^2(x)+\left (113+52 e^2+6 e^4\right ) x^4 \log ^2(x)+2 \left (9+2 e^2\right ) x^5 \log ^2(x)+x^6 \log ^2(x)-2 \int x^5 \log (x) \, dx-\left (2 \left (4+e^2\right )^4\right ) \int x \log (x) \, dx-\left (4 \left (9+2 e^2\right )\right ) \int x^4 \log (x) \, dx-\left (4 \left (4+e^2\right )^2 \left (9+2 e^2\right )\right ) \int x^2 \log (x) \, dx-\left (2 \left (113+52 e^2+6 e^4\right )\right ) \int x^3 \log (x) \, dx\\ &=1152 x+832 e^2 x+200 e^4 x+16 e^6 x-4 \left (4+e^2\right )^4 x+900 x^2+816 e^2 x^2+308 e^4 x^2+56 e^6 x^2+4 e^8 x^2+\frac {1}{2} \left (4+e^2\right )^4 x^2-\frac {1}{2} \left (4+e^2\right )^2 \left (56+8 e^2-e^4\right ) x^2+\frac {2032 x^3}{3}+\frac {1312 e^2 x^3}{3}+\frac {218 e^4 x^3}{3}-4 e^6 x^3-\frac {4 e^8 x^3}{3}+\frac {4}{9} \left (4+e^2\right )^2 \left (9+2 e^2\right ) x^3-\frac {2}{9} \left (870+664 e^2+224 e^4+40 e^6+3 e^8\right ) x^3+\frac {565 x^4}{2}+166 e^2 x^4+48 e^4 x^4+10 e^6 x^4+e^8 x^4+\frac {1}{8} \left (113+52 e^2+6 e^4\right ) x^4-\frac {1}{8} \left (957+708 e^2+182 e^4+16 e^6\right ) x^4+\frac {934 x^5}{5}+\frac {716 e^2 x^5}{5}+\frac {202 e^4 x^5}{5}+4 e^6 x^5+\frac {4}{25} \left (9+2 e^2\right ) x^5-\frac {2}{25} \left (503+244 e^2+30 e^4\right ) x^5+\frac {1579 x^6}{18}+\frac {136 e^2 x^6}{3}+6 e^4 x^6-\frac {1}{18} \left (103+24 e^2\right ) x^6+16 x^7+4 e^2 x^7+x^8+4 \left (4+e^2\right )^4 x \log (x)-\left (4+e^2\right )^4 x^2 \log (x)+\left (4+e^2\right )^2 \left (56+8 e^2-e^4\right ) x^2 \log (x)-\frac {4}{3} \left (4+e^2\right )^2 \left (9+2 e^2\right ) x^3 \log (x)+\frac {2}{3} \left (870+664 e^2+224 e^4+40 e^6+3 e^8\right ) x^3 \log (x)-\frac {1}{2} \left (113+52 e^2+6 e^4\right ) x^4 \log (x)+\frac {1}{2} \left (957+708 e^2+182 e^4+16 e^6\right ) x^4 \log (x)-\frac {4}{5} \left (9+2 e^2\right ) x^5 \log (x)+\frac {2}{5} \left (503+244 e^2+30 e^4\right ) x^5 \log (x)-\frac {1}{3} x^6 \log (x)+\frac {1}{3} \left (103+24 e^2\right ) x^6 \log (x)+2 x^7 \log (x)+\left (4+e^2\right )^4 x^2 \log ^2(x)+2 \left (4+e^2\right )^2 \left (9+2 e^2\right ) x^3 \log ^2(x)+\left (113+52 e^2+6 e^4\right ) x^4 \log ^2(x)+2 \left (9+2 e^2\right ) x^5 \log ^2(x)+x^6 \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.11, size = 207, normalized size = 7.14 \begin {gather*} x \left (-4 \left (4+e^2\right )^2 \left (-2+4 e^2+e^4\right )+\left (580+656 e^2+304 e^4+64 e^6+5 e^8\right ) x-2 \left (-274-168 e^2-17 e^4+6 e^6+e^8\right ) x^2+\left (177+84 e^2+26 e^4+8 e^6+e^8\right ) x^3+2 \left (74+62 e^2+19 e^4+2 e^6\right ) x^4+2 \left (41+22 e^2+3 e^4\right ) x^5+4 \left (4+e^2\right ) x^6+x^7+2 \left (2-x+x^2\right ) \left (16+e^4+9 x+x^2+2 e^2 (4+x)\right )^2 \log (x)+x \left (16+e^4+9 x+x^2+2 e^2 (4+x)\right )^2 \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 374, normalized size = 12.90 \begin {gather*} x^{8} + 16 \, x^{7} + 82 \, x^{6} + 148 \, x^{5} + 177 \, x^{4} + 548 \, x^{3} + {\left (x^{6} + 18 \, x^{5} + 113 \, x^{4} + 288 \, x^{3} + x^{2} e^{8} + 256 \, x^{2} + 4 \, {\left (x^{3} + 4 \, x^{2}\right )} e^{6} + 2 \, {\left (3 \, x^{4} + 25 \, x^{3} + 48 \, x^{2}\right )} e^{4} + 4 \, {\left (x^{5} + 13 \, x^{4} + 52 \, x^{3} + 64 \, x^{2}\right )} e^{2}\right )} \log \relax (x)^{2} + 580 \, x^{2} + {\left (x^{4} - 2 \, x^{3} + 5 \, x^{2} - 4 \, x\right )} e^{8} + 4 \, {\left (x^{5} + 2 \, x^{4} - 3 \, x^{3} + 16 \, x^{2} - 12 \, x\right )} e^{6} + 2 \, {\left (3 \, x^{6} + 19 \, x^{5} + 13 \, x^{4} + 17 \, x^{3} + 152 \, x^{2} - 92 \, x\right )} e^{4} + 4 \, {\left (x^{7} + 11 \, x^{6} + 31 \, x^{5} + 21 \, x^{4} + 84 \, x^{3} + 164 \, x^{2} - 48 \, x\right )} e^{2} + 2 \, {\left (x^{7} + 17 \, x^{6} + 97 \, x^{5} + 211 \, x^{4} + 194 \, x^{3} + 320 \, x^{2} + {\left (x^{3} - x^{2} + 2 \, x\right )} e^{8} + 4 \, {\left (x^{4} + 3 \, x^{3} - 2 \, x^{2} + 8 \, x\right )} e^{6} + 2 \, {\left (3 \, x^{5} + 22 \, x^{4} + 29 \, x^{3} + 2 \, x^{2} + 96 \, x\right )} e^{4} + 4 \, {\left (x^{6} + 12 \, x^{5} + 41 \, x^{4} + 38 \, x^{3} + 40 \, x^{2} + 128 \, x\right )} e^{2} + 512 \, x\right )} \log \relax (x) + 128 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 627, normalized size = 21.62 \begin {gather*} x^{8} + 2 \, x^{7} \log \relax (x) + 8 \, x^{6} e^{2} \log \relax (x) + x^{6} \log \relax (x)^{2} + 4 \, x^{5} e^{2} \log \relax (x)^{2} + 16 \, x^{7} - \frac {4}{3} \, x^{6} e^{2} + 34 \, x^{6} \log \relax (x) + 12 \, x^{5} e^{4} \log \relax (x) + 96 \, x^{5} e^{2} \log \relax (x) + 18 \, x^{5} \log \relax (x)^{2} + 6 \, x^{4} e^{4} \log \relax (x)^{2} + 52 \, x^{4} e^{2} \log \relax (x)^{2} + 82 \, x^{6} - \frac {12}{5} \, x^{5} e^{4} - \frac {96}{5} \, x^{5} e^{2} + 194 \, x^{5} \log \relax (x) + 8 \, x^{4} e^{6} \log \relax (x) + 88 \, x^{4} e^{4} \log \relax (x) + 328 \, x^{4} e^{2} \log \relax (x) + 113 \, x^{4} \log \relax (x)^{2} + 4 \, x^{3} e^{6} \log \relax (x)^{2} + 50 \, x^{3} e^{4} \log \relax (x)^{2} + 208 \, x^{3} e^{2} \log \relax (x)^{2} + 148 \, x^{5} - 2 \, x^{4} e^{6} - 22 \, x^{4} e^{4} - 82 \, x^{4} e^{2} + 422 \, x^{4} \log \relax (x) + 2 \, x^{3} e^{8} \log \relax (x) + 24 \, x^{3} e^{6} \log \relax (x) + 116 \, x^{3} e^{4} \log \relax (x) + 304 \, x^{3} e^{2} \log \relax (x) + 288 \, x^{3} \log \relax (x)^{2} + x^{2} e^{8} \log \relax (x)^{2} + 16 \, x^{2} e^{6} \log \relax (x)^{2} + 96 \, x^{2} e^{4} \log \relax (x)^{2} + 256 \, x^{2} e^{2} \log \relax (x)^{2} + 177 \, x^{4} - \frac {2}{3} \, x^{3} e^{8} - 8 \, x^{3} e^{6} - \frac {116}{3} \, x^{3} e^{4} - \frac {304}{3} \, x^{3} e^{2} + 388 \, x^{3} \log \relax (x) - 2 \, x^{2} e^{8} \log \relax (x) - 16 \, x^{2} e^{6} \log \relax (x) + 8 \, x^{2} e^{4} \log \relax (x) + 320 \, x^{2} e^{2} \log \relax (x) + 256 \, x^{2} \log \relax (x)^{2} + 548 \, x^{3} + x^{2} e^{8} + 8 \, x^{2} e^{6} - 4 \, x^{2} e^{4} - 160 \, x^{2} e^{2} + 640 \, x^{2} \log \relax (x) + 4 \, x e^{8} \log \relax (x) + 64 \, x e^{6} \log \relax (x) + 384 \, x e^{4} \log \relax (x) + 1024 \, x e^{2} \log \relax (x) + 580 \, x^{2} + \frac {1}{3} \, {\left (3 \, x^{4} - 4 \, x^{3} + 12 \, x^{2}\right )} e^{8} - 4 \, x e^{8} + 2 \, {\left (2 \, x^{5} + 5 \, x^{4} - 2 \, x^{3} + 28 \, x^{2} + 8 \, x\right )} e^{6} - 64 \, x e^{6} + \frac {2}{15} \, {\left (45 \, x^{6} + 303 \, x^{5} + 360 \, x^{4} + 545 \, x^{3} + 2310 \, x^{2} + 1500 \, x\right )} e^{4} - 384 \, x e^{4} + \frac {2}{15} \, {\left (30 \, x^{7} + 340 \, x^{6} + 1074 \, x^{5} + 1245 \, x^{4} + 3280 \, x^{3} + 6120 \, x^{2} + 6240 \, x\right )} e^{2} - 1024 \, x e^{2} + 1024 \, x \log \relax (x) + 128 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 408, normalized size = 14.07
method | result | size |
norman | \(x^{8}+x^{6} \ln \relax (x )^{2}+\left (16+4 \,{\mathrm e}^{2}\right ) x^{7}+\left (82+44 \,{\mathrm e}^{2}+6 \,{\mathrm e}^{4}\right ) x^{6}+\left (148+124 \,{\mathrm e}^{2}+38 \,{\mathrm e}^{4}+4 \,{\mathrm e}^{6}\right ) x^{5}+\left (128-48 \,{\mathrm e}^{6}-4 \,{\mathrm e}^{8}-184 \,{\mathrm e}^{4}-192 \,{\mathrm e}^{2}\right ) x +\left (177+26 \,{\mathrm e}^{4}+84 \,{\mathrm e}^{2}+8 \,{\mathrm e}^{6}+{\mathrm e}^{8}\right ) x^{4}+\left (548-12 \,{\mathrm e}^{6}+34 \,{\mathrm e}^{4}+336 \,{\mathrm e}^{2}-2 \,{\mathrm e}^{8}\right ) x^{3}+\left (580+5 \,{\mathrm e}^{8}+64 \,{\mathrm e}^{6}+304 \,{\mathrm e}^{4}+656 \,{\mathrm e}^{2}\right ) x^{2}+\left (18+4 \,{\mathrm e}^{2}\right ) x^{5} \ln \relax (x )^{2}+\left (34+8 \,{\mathrm e}^{2}\right ) x^{6} \ln \relax (x )+\left (194+96 \,{\mathrm e}^{2}+12 \,{\mathrm e}^{4}\right ) x^{5} \ln \relax (x )+\left (6 \,{\mathrm e}^{4}+52 \,{\mathrm e}^{2}+113\right ) x^{4} \ln \relax (x )^{2}+\left (422+88 \,{\mathrm e}^{4}+328 \,{\mathrm e}^{2}+8 \,{\mathrm e}^{6}\right ) x^{4} \ln \relax (x )+\left (4 \,{\mathrm e}^{6}+50 \,{\mathrm e}^{4}+208 \,{\mathrm e}^{2}+288\right ) x^{3} \ln \relax (x )^{2}+\left (388+24 \,{\mathrm e}^{6}+116 \,{\mathrm e}^{4}+304 \,{\mathrm e}^{2}+2 \,{\mathrm e}^{8}\right ) x^{3} \ln \relax (x )+\left (640-2 \,{\mathrm e}^{8}-16 \,{\mathrm e}^{6}+8 \,{\mathrm e}^{4}+320 \,{\mathrm e}^{2}\right ) x^{2} \ln \relax (x )+\left (1024+64 \,{\mathrm e}^{6}+4 \,{\mathrm e}^{8}+384 \,{\mathrm e}^{4}+1024 \,{\mathrm e}^{2}\right ) x \ln \relax (x )+\left ({\mathrm e}^{8}+16 \,{\mathrm e}^{6}+96 \,{\mathrm e}^{4}+256 \,{\mathrm e}^{2}+256\right ) x^{2} \ln \relax (x )^{2}+2 x^{7} \ln \relax (x )\) | \(408\) |
risch | \(128 x -192 \,{\mathrm e}^{2} x +124 \,{\mathrm e}^{2} x^{5}-4 x \,{\mathrm e}^{8}+64 x^{2} {\mathrm e}^{6}-12 x^{3} {\mathrm e}^{6}+5 x^{2} {\mathrm e}^{8}-184 x \,{\mathrm e}^{4}+16 x^{7}+x^{8}+82 x^{6}+148 x^{5}+177 x^{4}+548 x^{3}+580 x^{2}+44 x^{6} {\mathrm e}^{2}+34 x^{3} {\mathrm e}^{4}+304 x^{2} {\mathrm e}^{4}-48 x \,{\mathrm e}^{6}+336 x^{3} {\mathrm e}^{2}+656 x^{2} {\mathrm e}^{2}+84 x^{4} {\mathrm e}^{2}+\left (-\frac {x^{6}}{3}-\frac {8 \,{\mathrm e}^{2} x^{5}}{5}-\frac {36 x^{5}}{5}-3 x^{4} {\mathrm e}^{4}-26 x^{4} {\mathrm e}^{2}-\frac {113 x^{4}}{2}-\frac {8 x^{3} {\mathrm e}^{6}}{3}-\frac {100 x^{3} {\mathrm e}^{4}}{3}-\frac {416 x^{3} {\mathrm e}^{2}}{3}-192 x^{3}-x^{2} {\mathrm e}^{8}-16 x^{2} {\mathrm e}^{6}-96 x^{2} {\mathrm e}^{4}-256 x^{2} {\mathrm e}^{2}-256 x^{2}\right ) \ln \relax (x )+\left (x^{2} {\mathrm e}^{8}+4 x^{3} {\mathrm e}^{6}+6 x^{4} {\mathrm e}^{4}+4 \,{\mathrm e}^{2} x^{5}+x^{6}+16 x^{2} {\mathrm e}^{6}+50 x^{3} {\mathrm e}^{4}+52 x^{4} {\mathrm e}^{2}+18 x^{5}+96 x^{2} {\mathrm e}^{4}+208 x^{3} {\mathrm e}^{2}+113 x^{4}+256 x^{2} {\mathrm e}^{2}+288 x^{3}+256 x^{2}\right ) \ln \relax (x )^{2}+4 \,{\mathrm e}^{6} x^{5}+\left (2 x^{3} {\mathrm e}^{8}+8 x^{4} {\mathrm e}^{6}+12 x^{5} {\mathrm e}^{4}+8 x^{6} {\mathrm e}^{2}+2 x^{7}-x^{2} {\mathrm e}^{8}+\frac {80 x^{3} {\mathrm e}^{6}}{3}+91 x^{4} {\mathrm e}^{4}+\frac {488 \,{\mathrm e}^{2} x^{5}}{5}+\frac {103 x^{6}}{3}+4 x \,{\mathrm e}^{8}+\frac {448 x^{3} {\mathrm e}^{4}}{3}+354 x^{4} {\mathrm e}^{2}+\frac {1006 x^{5}}{5}+64 x \,{\mathrm e}^{6}+104 x^{2} {\mathrm e}^{4}+\frac {1328 x^{3} {\mathrm e}^{2}}{3}+\frac {957 x^{4}}{2}+384 x \,{\mathrm e}^{4}+576 x^{2} {\mathrm e}^{2}+580 x^{3}+1024 \,{\mathrm e}^{2} x +896 x^{2}+1024 x \right ) \ln \relax (x )+8 x^{4} {\mathrm e}^{6}+4 \,{\mathrm e}^{2} x^{7}+x^{4} {\mathrm e}^{8}-2 x^{3} {\mathrm e}^{8}+26 x^{4} {\mathrm e}^{4}+38 x^{5} {\mathrm e}^{4}+6 x^{6} {\mathrm e}^{4}\) | \(528\) |
default | \(128 x -1024 \,{\mathrm e}^{2} x +50 x^{3} {\mathrm e}^{4} \ln \relax (x )^{2}+64 x \,{\mathrm e}^{6} \ln \relax (x )+304 x^{3} {\mathrm e}^{2} \ln \relax (x )-\frac {96 \,{\mathrm e}^{2} x^{5}}{5}+640 x^{2} \ln \relax (x )+1024 x \,{\mathrm e}^{2} \ln \relax (x )+320 x^{2} {\mathrm e}^{2} \ln \relax (x )-4 x \,{\mathrm e}^{8}+8 x^{2} {\mathrm e}^{6}-8 x^{3} {\mathrm e}^{6}+x^{2} {\mathrm e}^{8}-384 x \,{\mathrm e}^{4}+256 x^{2} \ln \relax (x )^{2}+16 x^{7}+x^{8}+82 x^{6}+148 x^{5}+177 x^{4}+548 x^{3}+580 x^{2}+388 x^{3} \ln \relax (x )+8 x^{2} {\mathrm e}^{4} \ln \relax (x )+52 \,{\mathrm e}^{2} \ln \relax (x )^{2} x^{4}+96 \,{\mathrm e}^{2} \ln \relax (x ) x^{5}+208 \,{\mathrm e}^{2} \ln \relax (x )^{2} x^{3}+328 \,{\mathrm e}^{2} \ln \relax (x ) x^{4}+256 \,{\mathrm e}^{2} \ln \relax (x )^{2} x^{2}-\frac {4 x^{6} {\mathrm e}^{2}}{3}+x^{6} \ln \relax (x )^{2}+34 x^{6} \ln \relax (x )+2 x^{7} \ln \relax (x )+194 x^{5} \ln \relax (x )+113 x^{4} \ln \relax (x )^{2}-\frac {116 x^{3} {\mathrm e}^{4}}{3}-4 x^{2} {\mathrm e}^{4}-64 x \,{\mathrm e}^{6}-\frac {304 x^{3} {\mathrm e}^{2}}{3}-160 x^{2} {\mathrm e}^{2}+422 x^{4} \ln \relax (x )-82 x^{4} {\mathrm e}^{2}+1024 x \ln \relax (x )+{\mathrm e}^{4} \left (6 x^{6}+\frac {202}{5} x^{5}+48 x^{4}+\frac {218}{3} x^{3}+308 x^{2}+200 x \right )+{\mathrm e}^{6} \left (4 x^{5}+10 x^{4}-4 x^{3}+56 x^{2}+16 x \right )+{\mathrm e}^{8} \left (x^{4}-\frac {4}{3} x^{3}+4 x^{2}\right )+96 x^{2} {\mathrm e}^{4} \ln \relax (x )^{2}-2 x^{4} {\mathrm e}^{6}-\frac {2 x^{3} {\mathrm e}^{8}}{3}+{\mathrm e}^{2} \left (4 x^{7}+\frac {136}{3} x^{6}+\frac {716}{5} x^{5}+166 x^{4}+\frac {1312}{3} x^{3}+816 x^{2}+832 x \right )+18 x^{5} \ln \relax (x )^{2}+384 x \,{\mathrm e}^{4} \ln \relax (x )-22 x^{4} {\mathrm e}^{4}-\frac {12 x^{5} {\mathrm e}^{4}}{5}+288 x^{3} \ln \relax (x )^{2}+4 \,{\mathrm e}^{2} x^{5} \ln \relax (x )^{2}+8 \,{\mathrm e}^{2} x^{6} \ln \relax (x )+116 x^{3} {\mathrm e}^{4} \ln \relax (x )-2 \,{\mathrm e}^{8} \ln \relax (x ) x^{2}+16 \,{\mathrm e}^{6} \ln \relax (x )^{2} x^{2}+24 \,{\mathrm e}^{6} \ln \relax (x ) x^{3}+88 \,{\mathrm e}^{4} \ln \relax (x ) x^{4}+4 \,{\mathrm e}^{8} \ln \relax (x ) x -16 \,{\mathrm e}^{6} \ln \relax (x ) x^{2}+6 \,{\mathrm e}^{4} x^{4} \ln \relax (x )^{2}+4 \,{\mathrm e}^{6} x^{3} \ln \relax (x )^{2}+{\mathrm e}^{8} x^{2} \ln \relax (x )^{2}+8 \,{\mathrm e}^{6} x^{4} \ln \relax (x )+12 \,{\mathrm e}^{4} x^{5} \ln \relax (x )+2 \,{\mathrm e}^{8} x^{3} \ln \relax (x )\) | \(688\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 610, normalized size = 21.03 \begin {gather*} x^{8} + \frac {1}{18} \, {\left (18 \, \log \relax (x)^{2} - 6 \, \log \relax (x) + 1\right )} x^{6} + 16 \, x^{7} - \frac {1}{18} \, x^{6} {\left (24 \, e^{2} + 103\right )} + \frac {2}{25} \, {\left (25 \, {\left (2 \, e^{2} + 9\right )} \log \relax (x)^{2} - 10 \, {\left (2 \, e^{2} + 9\right )} \log \relax (x) + 4 \, e^{2} + 18\right )} x^{5} + \frac {263}{3} \, x^{6} - \frac {2}{25} \, x^{5} {\left (30 \, e^{4} + 244 \, e^{2} + 503\right )} + \frac {1}{8} \, {\left (8 \, {\left (6 \, e^{4} + 52 \, e^{2} + 113\right )} \log \relax (x)^{2} - 4 \, {\left (6 \, e^{4} + 52 \, e^{2} + 113\right )} \log \relax (x) + 6 \, e^{4} + 52 \, e^{2} + 113\right )} x^{4} + \frac {934}{5} \, x^{5} - \frac {1}{8} \, x^{4} {\left (16 \, e^{6} + 182 \, e^{4} + 708 \, e^{2} + 957\right )} + \frac {2}{9} \, {\left (9 \, {\left (2 \, e^{6} + 25 \, e^{4} + 104 \, e^{2} + 144\right )} \log \relax (x)^{2} - 6 \, {\left (2 \, e^{6} + 25 \, e^{4} + 104 \, e^{2} + 144\right )} \log \relax (x) + 4 \, e^{6} + 50 \, e^{4} + 208 \, e^{2} + 288\right )} x^{3} + \frac {565}{2} \, x^{4} - \frac {2}{9} \, x^{3} {\left (3 \, e^{8} + 40 \, e^{6} + 224 \, e^{4} + 664 \, e^{2} + 870\right )} + \frac {1}{2} \, {\left (2 \, {\left (e^{8} + 16 \, e^{6} + 96 \, e^{4} + 256 \, e^{2} + 256\right )} \log \relax (x)^{2} - 2 \, {\left (e^{8} + 16 \, e^{6} + 96 \, e^{4} + 256 \, e^{2} + 256\right )} \log \relax (x) + e^{8} + 16 \, e^{6} + 96 \, e^{4} + 256 \, e^{2} + 256\right )} x^{2} + \frac {2032}{3} \, x^{3} + \frac {1}{2} \, x^{2} {\left (e^{8} - 104 \, e^{4} - 576 \, e^{2} - 896\right )} + 900 \, x^{2} - 4 \, x {\left (e^{8} + 16 \, e^{6} + 96 \, e^{4} + 256 \, e^{2} + 256\right )} + \frac {1}{3} \, {\left (3 \, x^{4} - 4 \, x^{3} + 12 \, x^{2}\right )} e^{8} + 2 \, {\left (2 \, x^{5} + 5 \, x^{4} - 2 \, x^{3} + 28 \, x^{2} + 8 \, x\right )} e^{6} + \frac {2}{15} \, {\left (45 \, x^{6} + 303 \, x^{5} + 360 \, x^{4} + 545 \, x^{3} + 2310 \, x^{2} + 1500 \, x\right )} e^{4} + \frac {2}{15} \, {\left (30 \, x^{7} + 340 \, x^{6} + 1074 \, x^{5} + 1245 \, x^{4} + 3280 \, x^{3} + 6120 \, x^{2} + 6240 \, x\right )} e^{2} + \frac {1}{30} \, {\left (60 \, x^{7} + 1030 \, x^{6} + 6036 \, x^{5} + 14355 \, x^{4} + 17400 \, x^{3} + 26880 \, x^{2} + 30 \, {\left (2 \, x^{3} - x^{2} + 4 \, x\right )} e^{8} + 80 \, {\left (3 \, x^{4} + 10 \, x^{3} + 24 \, x\right )} e^{6} + 10 \, {\left (36 \, x^{5} + 273 \, x^{4} + 448 \, x^{3} + 312 \, x^{2} + 1152 \, x\right )} e^{4} + 4 \, {\left (60 \, x^{6} + 732 \, x^{5} + 2655 \, x^{4} + 3320 \, x^{3} + 4320 \, x^{2} + 7680 \, x\right )} e^{2} + 30720 \, x\right )} \log \relax (x) + 1152 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.64, size = 309, normalized size = 10.66 \begin {gather*} x^8+2\,x^7\,\ln \relax (x)+\left (4\,{\mathrm {e}}^2+16\right )\,x^7+x^6\,{\ln \relax (x)}^2+\left (8\,{\mathrm {e}}^2+34\right )\,x^6\,\ln \relax (x)+\left (44\,{\mathrm {e}}^2+6\,{\mathrm {e}}^4+82\right )\,x^6+\left (4\,{\mathrm {e}}^2+18\right )\,x^5\,{\ln \relax (x)}^2+\left (96\,{\mathrm {e}}^2+12\,{\mathrm {e}}^4+194\right )\,x^5\,\ln \relax (x)+\left (124\,{\mathrm {e}}^2+38\,{\mathrm {e}}^4+4\,{\mathrm {e}}^6+148\right )\,x^5+\left (52\,{\mathrm {e}}^2+6\,{\mathrm {e}}^4+113\right )\,x^4\,{\ln \relax (x)}^2+\left (328\,{\mathrm {e}}^2+88\,{\mathrm {e}}^4+8\,{\mathrm {e}}^6+422\right )\,x^4\,\ln \relax (x)+\left (84\,{\mathrm {e}}^2+26\,{\mathrm {e}}^4+8\,{\mathrm {e}}^6+{\mathrm {e}}^8+177\right )\,x^4+2\,\left (2\,{\mathrm {e}}^2+9\right )\,{\left ({\mathrm {e}}^2+4\right )}^2\,x^3\,{\ln \relax (x)}^2+\left (304\,{\mathrm {e}}^2+116\,{\mathrm {e}}^4+24\,{\mathrm {e}}^6+2\,{\mathrm {e}}^8+388\right )\,x^3\,\ln \relax (x)+\left (336\,{\mathrm {e}}^2+34\,{\mathrm {e}}^4-12\,{\mathrm {e}}^6-2\,{\mathrm {e}}^8+548\right )\,x^3+{\left ({\mathrm {e}}^2+4\right )}^4\,x^2\,{\ln \relax (x)}^2-2\,{\left ({\mathrm {e}}^2+4\right )}^2\,\left ({\mathrm {e}}^4-20\right )\,x^2\,\ln \relax (x)+\left (656\,{\mathrm {e}}^2+304\,{\mathrm {e}}^4+64\,{\mathrm {e}}^6+5\,{\mathrm {e}}^8+580\right )\,x^2+4\,{\left ({\mathrm {e}}^2+4\right )}^4\,x\,\ln \relax (x)-4\,{\left ({\mathrm {e}}^2+4\right )}^2\,\left (4\,{\mathrm {e}}^2+{\mathrm {e}}^4-2\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.64, size = 442, normalized size = 15.24 \begin {gather*} x^{8} + x^{7} \left (16 + 4 e^{2}\right ) + x^{6} \left (82 + 44 e^{2} + 6 e^{4}\right ) + x^{5} \left (148 + 124 e^{2} + 4 e^{6} + 38 e^{4}\right ) + x^{4} \left (177 + 84 e^{2} + 26 e^{4} + e^{8} + 8 e^{6}\right ) + x^{3} \left (- 2 e^{8} - 12 e^{6} + 548 + 34 e^{4} + 336 e^{2}\right ) + x^{2} \left (580 + 656 e^{2} + 5 e^{8} + 304 e^{4} + 64 e^{6}\right ) + x \left (- 48 e^{6} - 4 e^{8} - 184 e^{4} - 192 e^{2} + 128\right ) + \left (x^{6} + 18 x^{5} + 4 x^{5} e^{2} + 113 x^{4} + 6 x^{4} e^{4} + 52 x^{4} e^{2} + 288 x^{3} + 208 x^{3} e^{2} + 4 x^{3} e^{6} + 50 x^{3} e^{4} + 256 x^{2} + 256 x^{2} e^{2} + x^{2} e^{8} + 96 x^{2} e^{4} + 16 x^{2} e^{6}\right ) \log {\relax (x )}^{2} + \left (2 x^{7} + 34 x^{6} + 8 x^{6} e^{2} + 194 x^{5} + 12 x^{5} e^{4} + 96 x^{5} e^{2} + 422 x^{4} + 328 x^{4} e^{2} + 8 x^{4} e^{6} + 88 x^{4} e^{4} + 388 x^{3} + 304 x^{3} e^{2} + 2 x^{3} e^{8} + 116 x^{3} e^{4} + 24 x^{3} e^{6} - 16 x^{2} e^{6} - 2 x^{2} e^{8} + 8 x^{2} e^{4} + 640 x^{2} + 320 x^{2} e^{2} + 1024 x + 1024 x e^{2} + 4 x e^{8} + 384 x e^{4} + 64 x e^{6}\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________