Optimal. Leaf size=30 \[ \log \left (\left (5+\frac {1}{2} \left (-1+e^x\right )+\frac {-3+\frac {4}{x}}{x}-x^2\right )^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.24, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-32+12 x+2 e^x x^3-8 x^4}{8 x-6 x^2+9 x^3+e^x x^3-2 x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (-16+6 x+e^x x^3-4 x^4\right )}{8 x-6 x^2+9 x^3+e^x x^3-2 x^5} \, dx\\ &=2 \int \frac {-16+6 x+e^x x^3-4 x^4}{8 x-6 x^2+9 x^3+e^x x^3-2 x^5} \, dx\\ &=2 \int \left (1-\frac {-16-2 x+6 x^2-9 x^3-4 x^4+2 x^5}{x \left (-8+6 x-9 x^2-e^x x^2+2 x^4\right )}\right ) \, dx\\ &=2 x-2 \int \frac {-16-2 x+6 x^2-9 x^3-4 x^4+2 x^5}{x \left (-8+6 x-9 x^2-e^x x^2+2 x^4\right )} \, dx\\ &=2 x-2 \int \left (-\frac {2}{-8+6 x-9 x^2-e^x x^2+2 x^4}-\frac {16}{x \left (-8+6 x-9 x^2-e^x x^2+2 x^4\right )}+\frac {6 x}{-8+6 x-9 x^2-e^x x^2+2 x^4}-\frac {9 x^2}{-8+6 x-9 x^2-e^x x^2+2 x^4}-\frac {4 x^3}{-8+6 x-9 x^2-e^x x^2+2 x^4}+\frac {2 x^4}{-8+6 x-9 x^2-e^x x^2+2 x^4}\right ) \, dx\\ &=2 x+4 \int \frac {1}{-8+6 x-9 x^2-e^x x^2+2 x^4} \, dx-4 \int \frac {x^4}{-8+6 x-9 x^2-e^x x^2+2 x^4} \, dx+8 \int \frac {x^3}{-8+6 x-9 x^2-e^x x^2+2 x^4} \, dx-12 \int \frac {x}{-8+6 x-9 x^2-e^x x^2+2 x^4} \, dx+18 \int \frac {x^2}{-8+6 x-9 x^2-e^x x^2+2 x^4} \, dx+32 \int \frac {1}{x \left (-8+6 x-9 x^2-e^x x^2+2 x^4\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 30, normalized size = 1.00 \begin {gather*} -4 \log (x)+2 \log \left (8-6 x+9 x^2+e^x x^2-2 x^4\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 30, normalized size = 1.00 \begin {gather*} 2 \, \log \left (-\frac {2 \, x^{4} - x^{2} e^{x} - 9 \, x^{2} + 6 \, x - 8}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 29, normalized size = 0.97 \begin {gather*} 2 \, \log \left (-2 \, x^{4} + x^{2} e^{x} + 9 \, x^{2} - 6 \, x + 8\right ) - 4 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 27, normalized size = 0.90
method | result | size |
risch | \(2 \ln \left ({\mathrm e}^{x}-\frac {2 x^{4}-9 x^{2}+6 x -8}{x^{2}}\right )\) | \(27\) |
norman | \(-4 \ln \relax (x )+2 \ln \left (2 x^{4}-{\mathrm e}^{x} x^{2}-9 x^{2}+6 x -8\right )\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 30, normalized size = 1.00 \begin {gather*} 2 \, \log \left (-\frac {2 \, x^{4} - x^{2} e^{x} - 9 \, x^{2} + 6 \, x - 8}{x^{2}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.13, size = 28, normalized size = 0.93 \begin {gather*} 2\,\ln \left (3\,x-\frac {x^2\,{\mathrm {e}}^x}{2}-\frac {9\,x^2}{2}+x^4-4\right )-4\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 24, normalized size = 0.80 \begin {gather*} 2 \log {\left (e^{x} + \frac {- 2 x^{4} + 9 x^{2} - 6 x + 8}{x^{2}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________