Optimal. Leaf size=26 \[ e^{\frac {\log ^2(2 x)}{x^4 \left (5-x^2\right )^2}} x (3+x) \]
________________________________________________________________________________________
Rubi [B] time = 0.94, antiderivative size = 160, normalized size of antiderivative = 6.15, number of steps used = 1, number of rules used = 1, integrand size = 130, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.008, Rules used = {2288} \begin {gather*} \frac {e^{\frac {\log ^2(2 x)}{x^8-10 x^6+25 x^4}} \left (\left (-x^3-3 x^2+5 x+15\right ) \log (2 x)-2 \left (-2 x^3-6 x^2+5 x+15\right ) \log ^2(2 x)\right )}{\left (-x^{10}+15 x^8-75 x^6+125 x^4\right ) \left (\frac {\log (2 x)}{x \left (x^8-10 x^6+25 x^4\right )}-\frac {2 \left (2 x^7-15 x^5+25 x^3\right ) \log ^2(2 x)}{\left (x^8-10 x^6+25 x^4\right )^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {e^{\frac {\log ^2(2 x)}{25 x^4-10 x^6+x^8}} \left (\left (15+5 x-3 x^2-x^3\right ) \log (2 x)-2 \left (15+5 x-6 x^2-2 x^3\right ) \log ^2(2 x)\right )}{\left (125 x^4-75 x^6+15 x^8-x^{10}\right ) \left (\frac {\log (2 x)}{x \left (25 x^4-10 x^6+x^8\right )}-\frac {2 \left (25 x^3-15 x^5+2 x^7\right ) \log ^2(2 x)}{\left (25 x^4-10 x^6+x^8\right )^2}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 24, normalized size = 0.92 \begin {gather*} e^{\frac {\log ^2(2 x)}{x^4 \left (-5+x^2\right )^2}} x (3+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 32, normalized size = 1.23 \begin {gather*} {\left (x^{2} + 3 \, x\right )} e^{\left (\frac {\log \left (2 \, x\right )^{2}}{x^{8} - 10 \, x^{6} + 25 \, x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (2 \, x^{11} + 3 \, x^{10} - 30 \, x^{9} - 45 \, x^{8} + 150 \, x^{7} + 225 \, x^{6} - 250 \, x^{5} - 375 \, x^{4} - 4 \, {\left (2 \, x^{3} + 6 \, x^{2} - 5 \, x - 15\right )} \log \left (2 \, x\right )^{2} + 2 \, {\left (x^{3} + 3 \, x^{2} - 5 \, x - 15\right )} \log \left (2 \, x\right )\right )} e^{\left (\frac {\log \left (2 \, x\right )^{2}}{x^{8} - 10 \, x^{6} + 25 \, x^{4}}\right )}}{x^{10} - 15 \, x^{8} + 75 \, x^{6} - 125 \, x^{4}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 24, normalized size = 0.92
method | result | size |
risch | \(\left (3+x \right ) x \,{\mathrm e}^{\frac {\ln \left (2 x \right )^{2}}{x^{4} \left (x^{2}-5\right )^{2}}}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.01, size = 157, normalized size = 6.04 \begin {gather*} {\left (x^{2} + 3 \, x\right )} e^{\left (\frac {\log \relax (2)^{2}}{25 \, {\left (x^{4} - 10 \, x^{2} + 25\right )}} - \frac {2 \, \log \relax (2)^{2}}{125 \, {\left (x^{2} - 5\right )}} + \frac {2 \, \log \relax (2) \log \relax (x)}{25 \, {\left (x^{4} - 10 \, x^{2} + 25\right )}} - \frac {4 \, \log \relax (2) \log \relax (x)}{125 \, {\left (x^{2} - 5\right )}} + \frac {\log \relax (x)^{2}}{25 \, {\left (x^{4} - 10 \, x^{2} + 25\right )}} - \frac {2 \, \log \relax (x)^{2}}{125 \, {\left (x^{2} - 5\right )}} + \frac {2 \, \log \relax (2)^{2}}{125 \, x^{2}} + \frac {4 \, \log \relax (2) \log \relax (x)}{125 \, x^{2}} + \frac {2 \, \log \relax (x)^{2}}{125 \, x^{2}} + \frac {\log \relax (2)^{2}}{25 \, x^{4}} + \frac {2 \, \log \relax (2) \log \relax (x)}{25 \, x^{4}} + \frac {\log \relax (x)^{2}}{25 \, x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.31, size = 71, normalized size = 2.73 \begin {gather*} x\,x^{\frac {2\,\ln \relax (2)}{x^8-10\,x^6+25\,x^4}}\,{\mathrm {e}}^{\frac {{\ln \relax (x)}^2}{x^8-10\,x^6+25\,x^4}}\,{\mathrm {e}}^{\frac {{\ln \relax (2)}^2}{x^8-10\,x^6+25\,x^4}}\,\left (x+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________