Optimal. Leaf size=24 \[ 4-e^{x^2}-(-3+x)^2+x-\log (\log (4 x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 23, normalized size of antiderivative = 0.96, number of steps used = 7, number of rules used = 5, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {6688, 14, 2209, 2302, 29} \begin {gather*} -x^2-e^{x^2}+7 x-\log (\log (4 x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 29
Rule 2209
Rule 2302
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (7-2 \left (1+e^{x^2}\right ) x-\frac {1}{x \log (4 x)}\right ) \, dx\\ &=7 x-2 \int \left (1+e^{x^2}\right ) x \, dx-\int \frac {1}{x \log (4 x)} \, dx\\ &=7 x-2 \int \left (x+e^{x^2} x\right ) \, dx-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log (4 x)\right )\\ &=7 x-x^2-\log (\log (4 x))-2 \int e^{x^2} x \, dx\\ &=-e^{x^2}+7 x-x^2-\log (\log (4 x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 23, normalized size = 0.96 \begin {gather*} -e^{x^2}+7 x-x^2-\log (\log (4 x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 22, normalized size = 0.92 \begin {gather*} -x^{2} + 7 \, x - e^{\left (x^{2}\right )} - \log \left (\log \left (4 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 22, normalized size = 0.92 \begin {gather*} -x^{2} + 7 \, x - e^{\left (x^{2}\right )} - \log \left (\log \left (4 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 23, normalized size = 0.96
method | result | size |
default | \(-x^{2}+7 x -\ln \left (\ln \left (4 x \right )\right )-{\mathrm e}^{x^{2}}\) | \(23\) |
norman | \(-x^{2}+7 x -\ln \left (\ln \left (4 x \right )\right )-{\mathrm e}^{x^{2}}\) | \(23\) |
risch | \(-x^{2}+7 x -\ln \left (\ln \left (4 x \right )\right )-{\mathrm e}^{x^{2}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 22, normalized size = 0.92 \begin {gather*} -x^{2} + 7 \, x - e^{\left (x^{2}\right )} - \log \left (\log \left (4 \, x\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.09, size = 22, normalized size = 0.92 \begin {gather*} 7\,x-{\mathrm {e}}^{x^2}-\ln \left (\ln \left (4\,x\right )\right )-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 17, normalized size = 0.71 \begin {gather*} - x^{2} + 7 x - e^{x^{2}} - \log {\left (\log {\left (4 x \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________