Optimal. Leaf size=32 \[ 2 \left (-e^{\frac {2}{3-e^x \left (\log (3)-\frac {x}{\log (4)}\right )^2}}+\log (2)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 9.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x \left (x^2-2 x \log (3) \log (4)+\log ^2(3) \log ^2(4)\right )}\right ) \left (\left (-8 x-4 x^2\right ) \log ^2(4)+(8+8 x) \log (3) \log ^3(4)-4 \log ^2(3) \log ^4(4)\right )}{9 \log ^4(4)+e^x \left (-6 x^2 \log ^2(4)+12 x \log (3) \log ^3(4)-6 \log ^2(3) \log ^4(4)\right )+e^{2 x} \left (x^4-4 x^3 \log (3) \log (4)+6 x^2 \log ^2(3) \log ^2(4)-4 x \log ^3(3) \log ^3(4)+\log ^4(3) \log ^4(4)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right ) \log ^2(4) \left (-x^2+\log (3) \log (4) (2-\log (3) \log (4))-x (2-\log (4) \log (9))\right )}{\left (3 \log ^2(4)-e^x (x-\log (3) \log (4))^2\right )^2} \, dx\\ &=\left (4 \log ^2(4)\right ) \int \frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right ) \left (-x^2+\log (3) \log (4) (2-\log (3) \log (4))-x (2-\log (4) \log (9))\right )}{\left (3 \log ^2(4)-e^x (x-\log (3) \log (4))^2\right )^2} \, dx\\ &=\left (4 \log ^2(4)\right ) \int \left (-\frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right ) x^2}{\left (e^x x^2-2 e^x x \log (3) \log (4)-3 \log ^2(4)+e^x \log ^2(3) \log ^2(4)\right )^2}-\frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right ) \log (3) \log (4) (-2+\log (3) \log (4))}{\left (e^x x^2-2 e^x x \log (3) \log (4)-3 \log ^2(4)+e^x \log ^2(3) \log ^2(4)\right )^2}+\frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right ) x (-2+\log (4) \log (9))}{\left (e^x x^2-2 e^x x \log (3) \log (4)-3 \log ^2(4)+e^x \log ^2(3) \log ^2(4)\right )^2}\right ) \, dx\\ &=-\left (\left (4 \log ^2(4)\right ) \int \frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right ) x^2}{\left (e^x x^2-2 e^x x \log (3) \log (4)-3 \log ^2(4)+e^x \log ^2(3) \log ^2(4)\right )^2} \, dx\right )+\left (4 \log (3) \log ^3(4) (2-\log (3) \log (4))\right ) \int \frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right )}{\left (e^x x^2-2 e^x x \log (3) \log (4)-3 \log ^2(4)+e^x \log ^2(3) \log ^2(4)\right )^2} \, dx-\left (4 \log ^2(4) (2-\log (4) \log (9))\right ) \int \frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right ) x}{\left (e^x x^2-2 e^x x \log (3) \log (4)-3 \log ^2(4)+e^x \log ^2(3) \log ^2(4)\right )^2} \, dx\\ &=-\left (\left (4 \log ^2(4)\right ) \int \frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right ) x^2}{\left (3 \log ^2(4)-e^x (x-\log (3) \log (4))^2\right )^2} \, dx\right )+\left (4 \log (3) \log ^3(4) (2-\log (3) \log (4))\right ) \int \frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right )}{\left (3 \log ^2(4)-e^x (x-\log (3) \log (4))^2\right )^2} \, dx-\left (4 \log ^2(4) (2-\log (4) \log (9))\right ) \int \frac {\exp \left (x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x (x-\log (3) \log (4))^2}\right ) x}{\left (3 \log ^2(4)-e^x (x-\log (3) \log (4))^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 4.53, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{x-\frac {2 \log ^2(4)}{-3 \log ^2(4)+e^x \left (x^2-2 x \log (3) \log (4)+\log ^2(3) \log ^2(4)\right )}} \left (\left (-8 x-4 x^2\right ) \log ^2(4)+(8+8 x) \log (3) \log ^3(4)-4 \log ^2(3) \log ^4(4)\right )}{9 \log ^4(4)+e^x \left (-6 x^2 \log ^2(4)+12 x \log (3) \log ^3(4)-6 \log ^2(3) \log ^4(4)\right )+e^{2 x} \left (x^4-4 x^3 \log (3) \log (4)+6 x^2 \log ^2(3) \log ^2(4)-4 x \log ^3(3) \log ^3(4)+\log ^4(3) \log ^4(4)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.62, size = 82, normalized size = 2.56 \begin {gather*} -2 \, e^{\left (-x - \frac {4 \, {\left (3 \, x + 2\right )} \log \relax (2)^{2} - {\left (4 \, x \log \relax (3)^{2} \log \relax (2)^{2} - 4 \, x^{2} \log \relax (3) \log \relax (2) + x^{3}\right )} e^{x}}{{\left (4 \, \log \relax (3)^{2} \log \relax (2)^{2} - 4 \, x \log \relax (3) \log \relax (2) + x^{2}\right )} e^{x} - 12 \, \log \relax (2)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {16 \, {\left (4 \, \log \relax (3)^{2} \log \relax (2)^{4} - 4 \, {\left (x + 1\right )} \log \relax (3) \log \relax (2)^{3} + {\left (x^{2} + 2 \, x\right )} \log \relax (2)^{2}\right )} e^{\left (x - \frac {8 \, \log \relax (2)^{2}}{{\left (4 \, \log \relax (3)^{2} \log \relax (2)^{2} - 4 \, x \log \relax (3) \log \relax (2) + x^{2}\right )} e^{x} - 12 \, \log \relax (2)^{2}}\right )}}{144 \, \log \relax (2)^{4} + {\left (16 \, \log \relax (3)^{4} \log \relax (2)^{4} - 32 \, x \log \relax (3)^{3} \log \relax (2)^{3} + 24 \, x^{2} \log \relax (3)^{2} \log \relax (2)^{2} - 8 \, x^{3} \log \relax (3) \log \relax (2) + x^{4}\right )} e^{\left (2 \, x\right )} - 24 \, {\left (4 \, \log \relax (3)^{2} \log \relax (2)^{4} - 4 \, x \log \relax (3) \log \relax (2)^{3} + x^{2} \log \relax (2)^{2}\right )} e^{x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.68, size = 46, normalized size = 1.44
method | result | size |
risch | \(-2 \,{\mathrm e}^{-\frac {8 \ln \relax (2)^{2}}{4 \ln \relax (2)^{2} {\mathrm e}^{x} \ln \relax (3)^{2}-4 \ln \relax (2) {\mathrm e}^{x} \ln \relax (3) x +{\mathrm e}^{x} x^{2}-12 \ln \relax (2)^{2}}}\) | \(46\) |
norman | \(\frac {24 \ln \relax (2)^{2} {\mathrm e}^{-\frac {8 \ln \relax (2)^{2}}{\left (4 \ln \relax (3)^{2} \ln \relax (2)^{2}-4 x \ln \relax (2) \ln \relax (3)+x^{2}\right ) {\mathrm e}^{x}-12 \ln \relax (2)^{2}}}-2 \,{\mathrm e}^{x} x^{2} {\mathrm e}^{-\frac {8 \ln \relax (2)^{2}}{\left (4 \ln \relax (3)^{2} \ln \relax (2)^{2}-4 x \ln \relax (2) \ln \relax (3)+x^{2}\right ) {\mathrm e}^{x}-12 \ln \relax (2)^{2}}}-8 \ln \relax (2)^{2} {\mathrm e}^{x} \ln \relax (3)^{2} {\mathrm e}^{-\frac {8 \ln \relax (2)^{2}}{\left (4 \ln \relax (3)^{2} \ln \relax (2)^{2}-4 x \ln \relax (2) \ln \relax (3)+x^{2}\right ) {\mathrm e}^{x}-12 \ln \relax (2)^{2}}}+8 \ln \relax (2) {\mathrm e}^{x} \ln \relax (3) x \,{\mathrm e}^{-\frac {8 \ln \relax (2)^{2}}{\left (4 \ln \relax (3)^{2} \ln \relax (2)^{2}-4 x \ln \relax (2) \ln \relax (3)+x^{2}\right ) {\mathrm e}^{x}-12 \ln \relax (2)^{2}}}}{4 \ln \relax (2)^{2} {\mathrm e}^{x} \ln \relax (3)^{2}-4 \ln \relax (2) {\mathrm e}^{x} \ln \relax (3) x +{\mathrm e}^{x} x^{2}-12 \ln \relax (2)^{2}}\) | \(233\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 1.00, size = 42, normalized size = 1.31 \begin {gather*} -2 \, e^{\left (-\frac {8 \, \log \relax (2)^{2}}{{\left (4 \, \log \relax (3)^{2} \log \relax (2)^{2} - 4 \, x \log \relax (3) \log \relax (2) + x^{2}\right )} e^{x} - 12 \, \log \relax (2)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.00, size = 45, normalized size = 1.41 \begin {gather*} -2\,{\mathrm {e}}^{-\frac {8\,{\ln \relax (2)}^2}{x^2\,{\mathrm {e}}^x-12\,{\ln \relax (2)}^2+4\,{\mathrm {e}}^x\,{\ln \relax (2)}^2\,{\ln \relax (3)}^2-4\,x\,{\mathrm {e}}^x\,\ln \relax (2)\,\ln \relax (3)}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.82, size = 46, normalized size = 1.44 \begin {gather*} - 2 e^{- \frac {8 \log {\relax (2 )}^{2}}{\left (x^{2} - 4 x \log {\relax (2 )} \log {\relax (3 )} + 4 \log {\relax (2 )}^{2} \log {\relax (3 )}^{2}\right ) e^{x} - 12 \log {\relax (2 )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________