Optimal. Leaf size=27 \[ \frac {3 x}{4 (2+x)^2 \log \left (\frac {4 \left (\frac {5}{x}-x\right )}{x}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.85, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-60-30 x+\left (-30+15 x+6 x^2-3 x^3\right ) \log \left (\frac {20-4 x^2}{x^2}\right )}{\left (-160-240 x-88 x^2+28 x^3+24 x^4+4 x^5\right ) \log ^2\left (\frac {20-4 x^2}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 \left (10 (2+x)+\left (10-5 x-2 x^2+x^3\right ) \log \left (-4+\frac {20}{x^2}\right )\right )}{4 (2+x)^3 \left (5-x^2\right ) \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx\\ &=\frac {3}{4} \int \frac {10 (2+x)+\left (10-5 x-2 x^2+x^3\right ) \log \left (-4+\frac {20}{x^2}\right )}{(2+x)^3 \left (5-x^2\right ) \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx\\ &=\frac {3}{4} \int \left (-\frac {10}{(2+x)^2 \left (-5+x^2\right ) \log ^2\left (-4+\frac {20}{x^2}\right )}+\frac {2-x}{(2+x)^3 \log \left (-4+\frac {20}{x^2}\right )}\right ) \, dx\\ &=\frac {3}{4} \int \frac {2-x}{(2+x)^3 \log \left (-4+\frac {20}{x^2}\right )} \, dx-\frac {15}{2} \int \frac {1}{(2+x)^2 \left (-5+x^2\right ) \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx\\ &=\frac {3}{4} \int \left (\frac {4}{(2+x)^3 \log \left (-4+\frac {20}{x^2}\right )}-\frac {1}{(2+x)^2 \log \left (-4+\frac {20}{x^2}\right )}\right ) \, dx-\frac {15}{2} \int \left (-\frac {1}{(2+x)^2 \log ^2\left (-4+\frac {20}{x^2}\right )}+\frac {4}{(2+x) \log ^2\left (-4+\frac {20}{x^2}\right )}+\frac {9-4 x}{\left (-5+x^2\right ) \log ^2\left (-4+\frac {20}{x^2}\right )}\right ) \, dx\\ &=-\left (\frac {3}{4} \int \frac {1}{(2+x)^2 \log \left (-4+\frac {20}{x^2}\right )} \, dx\right )+3 \int \frac {1}{(2+x)^3 \log \left (-4+\frac {20}{x^2}\right )} \, dx+\frac {15}{2} \int \frac {1}{(2+x)^2 \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx-\frac {15}{2} \int \frac {9-4 x}{\left (-5+x^2\right ) \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx-30 \int \frac {1}{(2+x) \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx\\ &=-\left (\frac {3}{4} \int \frac {1}{(2+x)^2 \log \left (-4+\frac {20}{x^2}\right )} \, dx\right )+3 \int \frac {1}{(2+x)^3 \log \left (-4+\frac {20}{x^2}\right )} \, dx-\frac {15}{2} \int \left (\frac {9}{\left (-5+x^2\right ) \log ^2\left (-4+\frac {20}{x^2}\right )}-\frac {4 x}{\left (-5+x^2\right ) \log ^2\left (-4+\frac {20}{x^2}\right )}\right ) \, dx+\frac {15}{2} \int \frac {1}{(2+x)^2 \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx-30 \int \frac {1}{(2+x) \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx\\ &=-\left (\frac {3}{4} \int \frac {1}{(2+x)^2 \log \left (-4+\frac {20}{x^2}\right )} \, dx\right )+3 \int \frac {1}{(2+x)^3 \log \left (-4+\frac {20}{x^2}\right )} \, dx+\frac {15}{2} \int \frac {1}{(2+x)^2 \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx-30 \int \frac {1}{(2+x) \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx+30 \int \frac {x}{\left (-5+x^2\right ) \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx-\frac {135}{2} \int \frac {1}{\left (-5+x^2\right ) \log ^2\left (-4+\frac {20}{x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.04, size = 20, normalized size = 0.74 \begin {gather*} \frac {3 x}{4 (2+x)^2 \log \left (-4+\frac {20}{x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 26, normalized size = 0.96 \begin {gather*} \frac {3 \, x}{4 \, {\left (x^{2} + 4 \, x + 4\right )} \log \left (-\frac {4 \, {\left (x^{2} - 5\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 48, normalized size = 1.78 \begin {gather*} \frac {3 \, x}{4 \, {\left (x^{2} \log \left (-\frac {4 \, {\left (x^{2} - 5\right )}}{x^{2}}\right ) + 4 \, x \log \left (-\frac {4 \, {\left (x^{2} - 5\right )}}{x^{2}}\right ) + 4 \, \log \left (-\frac {4 \, {\left (x^{2} - 5\right )}}{x^{2}}\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.85
method | result | size |
norman | \(\frac {3 x}{4 \left (2+x \right )^{2} \ln \left (\frac {-4 x^{2}+20}{x^{2}}\right )}\) | \(23\) |
risch | \(\frac {3 x}{4 \left (x^{2}+4 x +4\right ) \ln \left (\frac {-4 x^{2}+20}{x^{2}}\right )}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.62, size = 63, normalized size = 2.33 \begin {gather*} \frac {3 \, x}{4 \, {\left (4 i \, \pi + {\left (i \, \pi + 2 \, \log \relax (2)\right )} x^{2} - 4 \, {\left (-i \, \pi - 2 \, \log \relax (2)\right )} x + {\left (x^{2} + 4 \, x + 4\right )} \log \left (x^{2} - 5\right ) - 2 \, {\left (x^{2} + 4 \, x + 4\right )} \log \relax (x) + 8 \, \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.29, size = 49, normalized size = 1.81 \begin {gather*} \frac {3\,x}{4\,\ln \left (-\frac {4\,x^2-20}{x^2}\right )\,{\left (x+2\right )}^2}-\frac {12}{5\,{\left (x+2\right )}^2}-\frac {3\,x^2}{5\,{\left (x+2\right )}^2}-\frac {12\,x}{5\,{\left (x+2\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 24, normalized size = 0.89 \begin {gather*} \frac {3 x}{\left (4 x^{2} + 16 x + 16\right ) \log {\left (\frac {20 - 4 x^{2}}{x^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________