Optimal. Leaf size=32 \[ \frac {20}{5+x}-\left (-1-e^{5/x}+x+\frac {3 (5+x)}{x}\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.96, antiderivative size = 66, normalized size of antiderivative = 2.06, number of steps used = 25, number of rules used = 9, integrand size = 102, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {1594, 27, 6742, 2209, 44, 43, 2206, 2210, 2212} \begin {gather*} -x^2-\frac {225}{x^2}+2 e^{5/x} x-4 x+4 e^{5/x}-e^{10/x}+\frac {20}{x+5}+\frac {30 e^{5/x}}{x}-\frac {60}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 43
Rule 44
Rule 1594
Rule 2206
Rule 2209
Rule 2210
Rule 2212
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {11250+6000 x+1050 x^2-60 x^3-90 x^4-24 x^5-2 x^6+e^{10/x} \left (250 x+100 x^2+10 x^3\right )+e^{5/x} \left (-3750-2750 x-900 x^2-100 x^3+10 x^4+2 x^5\right )}{x^3 \left (25+10 x+x^2\right )} \, dx\\ &=\int \frac {11250+6000 x+1050 x^2-60 x^3-90 x^4-24 x^5-2 x^6+e^{10/x} \left (250 x+100 x^2+10 x^3\right )+e^{5/x} \left (-3750-2750 x-900 x^2-100 x^3+10 x^4+2 x^5\right )}{x^3 (5+x)^2} \, dx\\ &=\int \left (\frac {10 e^{10/x}}{x^2}-\frac {60}{(5+x)^2}+\frac {11250}{x^3 (5+x)^2}+\frac {6000}{x^2 (5+x)^2}+\frac {1050}{x (5+x)^2}-\frac {90 x}{(5+x)^2}-\frac {24 x^2}{(5+x)^2}-\frac {2 x^3}{(5+x)^2}+\frac {2 e^{5/x} \left (-75-25 x-5 x^2+x^3\right )}{x^3}\right ) \, dx\\ &=\frac {60}{5+x}-2 \int \frac {x^3}{(5+x)^2} \, dx+2 \int \frac {e^{5/x} \left (-75-25 x-5 x^2+x^3\right )}{x^3} \, dx+10 \int \frac {e^{10/x}}{x^2} \, dx-24 \int \frac {x^2}{(5+x)^2} \, dx-90 \int \frac {x}{(5+x)^2} \, dx+1050 \int \frac {1}{x (5+x)^2} \, dx+6000 \int \frac {1}{x^2 (5+x)^2} \, dx+11250 \int \frac {1}{x^3 (5+x)^2} \, dx\\ &=-e^{10/x}+\frac {60}{5+x}+2 \int \left (e^{5/x}-\frac {75 e^{5/x}}{x^3}-\frac {25 e^{5/x}}{x^2}-\frac {5 e^{5/x}}{x}\right ) \, dx-2 \int \left (-10+x-\frac {125}{(5+x)^2}+\frac {75}{5+x}\right ) \, dx-24 \int \left (1+\frac {25}{(5+x)^2}-\frac {10}{5+x}\right ) \, dx-90 \int \left (-\frac {5}{(5+x)^2}+\frac {1}{5+x}\right ) \, dx+1050 \int \left (\frac {1}{25 x}-\frac {1}{5 (5+x)^2}-\frac {1}{25 (5+x)}\right ) \, dx+6000 \int \left (\frac {1}{25 x^2}-\frac {2}{125 x}+\frac {1}{25 (5+x)^2}+\frac {2}{125 (5+x)}\right ) \, dx+11250 \int \left (\frac {1}{25 x^3}-\frac {2}{125 x^2}+\frac {3}{625 x}-\frac {1}{125 (5+x)^2}-\frac {3}{625 (5+x)}\right ) \, dx\\ &=-e^{10/x}-\frac {225}{x^2}-\frac {60}{x}-4 x-x^2+\frac {20}{5+x}+2 \int e^{5/x} \, dx-10 \int \frac {e^{5/x}}{x} \, dx-50 \int \frac {e^{5/x}}{x^2} \, dx-150 \int \frac {e^{5/x}}{x^3} \, dx\\ &=10 e^{5/x}-e^{10/x}-\frac {225}{x^2}-\frac {60}{x}+\frac {30 e^{5/x}}{x}-4 x+2 e^{5/x} x-x^2+\frac {20}{5+x}+10 \text {Ei}\left (\frac {5}{x}\right )+10 \int \frac {e^{5/x}}{x} \, dx+30 \int \frac {e^{5/x}}{x^2} \, dx\\ &=4 e^{5/x}-e^{10/x}-\frac {225}{x^2}-\frac {60}{x}+\frac {30 e^{5/x}}{x}-4 x+2 e^{5/x} x-x^2+\frac {20}{5+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 59, normalized size = 1.84 \begin {gather*} 2 \left (-\frac {e^{10/x}}{2}-\frac {225}{2 x^2}-\frac {30}{x}-2 x-\frac {x^2}{2}+\frac {10}{5+x}+e^{5/x} \left (2+\frac {15}{x}+x\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 77, normalized size = 2.41 \begin {gather*} -\frac {x^{5} + 9 \, x^{4} + 20 \, x^{3} + 40 \, x^{2} + {\left (x^{3} + 5 \, x^{2}\right )} e^{\frac {10}{x}} - 2 \, {\left (x^{4} + 7 \, x^{3} + 25 \, x^{2} + 75 \, x\right )} e^{\frac {5}{x}} + 525 \, x + 1125}{x^{3} + 5 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 105, normalized size = 3.28 \begin {gather*} \frac {\frac {2 \, e^{\frac {5}{x}}}{x} - \frac {9}{x} - \frac {e^{\frac {10}{x}}}{x^{2}} + \frac {14 \, e^{\frac {5}{x}}}{x^{2}} - \frac {24}{x^{2}} - \frac {5 \, e^{\frac {10}{x}}}{x^{3}} + \frac {50 \, e^{\frac {5}{x}}}{x^{3}} - \frac {60}{x^{3}} + \frac {150 \, e^{\frac {5}{x}}}{x^{4}} - \frac {525}{x^{4}} - \frac {1125}{x^{5}} - 1}{\frac {1}{x^{2}} + \frac {5}{x^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 56, normalized size = 1.75
method | result | size |
risch | \(-x^{2}-4 x +\frac {-40 x^{2}-525 x -1125}{x^{2} \left (5+x \right )}-{\mathrm e}^{\frac {10}{x}}+\frac {2 \left (x^{2}+2 x +15\right ) {\mathrm e}^{\frac {5}{x}}}{x}\) | \(56\) |
derivativedivides | \(-x^{2}-4 x -\frac {4}{1+\frac {5}{x}}-\frac {60}{x}-\frac {225}{x^{2}}+2 x \,{\mathrm e}^{\frac {5}{x}}+4 \,{\mathrm e}^{\frac {5}{x}}-{\mathrm e}^{\frac {10}{x}}+\frac {30 \,{\mathrm e}^{\frac {5}{x}}}{x}\) | \(69\) |
default | \(-x^{2}-4 x -\frac {4}{1+\frac {5}{x}}-\frac {60}{x}-\frac {225}{x^{2}}+2 x \,{\mathrm e}^{\frac {5}{x}}+4 \,{\mathrm e}^{\frac {5}{x}}-{\mathrm e}^{\frac {10}{x}}+\frac {30 \,{\mathrm e}^{\frac {5}{x}}}{x}\) | \(69\) |
norman | \(\frac {-1125+60 x^{2}-525 x -9 x^{4}-x^{5}+150 x \,{\mathrm e}^{\frac {5}{x}}+50 x^{2} {\mathrm e}^{\frac {5}{x}}-5 x^{2} {\mathrm e}^{\frac {10}{x}}+14 \,{\mathrm e}^{\frac {5}{x}} x^{3}+2 \,{\mathrm e}^{\frac {5}{x}} x^{4}-x^{3} {\mathrm e}^{\frac {10}{x}}}{x^{2} \left (5+x \right )}\) | \(98\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -x^{2} + 2 \, x e^{\frac {5}{x}} - 4 \, x + \frac {45 \, {\left (6 \, x^{2} + 15 \, x - 25\right )}}{x^{3} + 5 \, x^{2}} - \frac {240 \, {\left (2 \, x + 5\right )}}{x^{2} + 5 \, x} + \frac {170}{x + 5} - e^{\frac {10}{x}} - 2 \, \int \frac {25 \, {\left (x + 3\right )} e^{\frac {5}{x}}}{x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.20, size = 71, normalized size = 2.22 \begin {gather*} 4\,{\mathrm {e}}^{5/x}-{\mathrm {e}}^{10/x}+x\,\left (2\,{\mathrm {e}}^{5/x}-4\right )-x^2+\frac {x\,\left (150\,{\mathrm {e}}^{5/x}-525\right )+x^2\,\left (30\,{\mathrm {e}}^{5/x}-40\right )-1125}{x^2\,\left (x+5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 48, normalized size = 1.50 \begin {gather*} - x^{2} - 4 x - \frac {40 x^{2} + 525 x + 1125}{x^{3} + 5 x^{2}} + \frac {- x e^{\frac {10}{x}} + \left (2 x^{2} + 4 x + 30\right ) e^{\frac {5}{x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________