Optimal. Leaf size=28 \[ \frac {1}{9 \left (-e^{e^x \left (-\frac {e^3}{5}+\log (4)\right )^2}+x\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 1.39, antiderivative size = 29, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 3, integrand size = 147, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.020, Rules used = {6688, 12, 6686} \begin {gather*} \frac {1}{9 \left (e^{\frac {1}{25} e^x \left (e^3-5 \log (4)\right )^2}-x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (25-e^{6+x+\frac {1}{25} e^x \left (e^3-5 \log (4)\right )^2} \left (1-\frac {5 \left (2 e^3-5 \log (4)\right ) \log (4)}{e^6}\right )\right )}{225 \left (e^{\frac {1}{25} e^x \left (e^3-5 \log (4)\right )^2}-x\right )^3} \, dx\\ &=\frac {2}{225} \int \frac {25-e^{6+x+\frac {1}{25} e^x \left (e^3-5 \log (4)\right )^2} \left (1-\frac {5 \left (2 e^3-5 \log (4)\right ) \log (4)}{e^6}\right )}{\left (e^{\frac {1}{25} e^x \left (e^3-5 \log (4)\right )^2}-x\right )^3} \, dx\\ &=\frac {1}{9 \left (e^{\frac {1}{25} e^x \left (e^3-5 \log (4)\right )^2}-x\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 29, normalized size = 1.04 \begin {gather*} \frac {1}{9 \left (e^{\frac {1}{25} e^x \left (e^3-5 \log (4)\right )^2}-x\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 72, normalized size = 2.57 \begin {gather*} \frac {e^{\left (2 \, x\right )}}{9 \, {\left (x^{2} e^{\left (2 \, x\right )} - 2 \, x e^{\left (-\frac {1}{25} \, {\left (20 \, e^{3} \log \relax (2) - 100 \, \log \relax (2)^{2} - e^{6}\right )} e^{x} + 2 \, x\right )} + e^{\left (-\frac {2}{25} \, {\left (20 \, e^{3} \log \relax (2) - 100 \, \log \relax (2)^{2} - e^{6}\right )} e^{x} + 2 \, x\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 31, normalized size = 1.11
method | result | size |
risch | \(\frac {1}{9 \left (x -{\mathrm e}^{-\frac {\left (-{\mathrm e}^{6}+20 \,{\mathrm e}^{3} \ln \relax (2)-100 \ln \relax (2)^{2}\right ) {\mathrm e}^{x}}{25}}\right )^{2}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.29, size = 68, normalized size = 2.43 \begin {gather*} \frac {2^{\frac {8}{5} \, e^{\left (x + 3\right )}}}{9 \, {\left (2^{\frac {8}{5} \, e^{\left (x + 3\right )}} x^{2} - 2 \, x e^{\left (4 \, e^{x} \log \relax (2)^{2} + \frac {4}{5} \, e^{\left (x + 3\right )} \log \relax (2) + \frac {1}{25} \, e^{\left (x + 6\right )}\right )} + e^{\left (8 \, e^{x} \log \relax (2)^{2} + \frac {2}{25} \, e^{\left (x + 6\right )}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.69, size = 65, normalized size = 2.32 \begin {gather*} \frac {1}{9\,\left (\frac {{\mathrm {e}}^{8\,{\mathrm {e}}^x\,{\ln \relax (2)}^2+\frac {2\,{\mathrm {e}}^6\,{\mathrm {e}}^x}{25}}}{2^{\frac {8\,{\mathrm {e}}^{x+3}}{5}}}+x^2-2^{1-\frac {4\,{\mathrm {e}}^{x+3}}{5}}\,x\,{\mathrm {e}}^{4\,{\mathrm {e}}^x\,{\ln \relax (2)}^2+\frac {{\mathrm {e}}^6\,{\mathrm {e}}^x}{25}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 66, normalized size = 2.36 \begin {gather*} \frac {1}{9 x^{2} - 18 x e^{\left (- \frac {4 e^{3} \log {\relax (2 )}}{5} + 4 \log {\relax (2 )}^{2} + \frac {e^{6}}{25}\right ) e^{x}} + 9 e^{2 \left (- \frac {4 e^{3} \log {\relax (2 )}}{5} + 4 \log {\relax (2 )}^{2} + \frac {e^{6}}{25}\right ) e^{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________