Optimal. Leaf size=30 \[ \frac {e^{2 \log ^2(x)} x^2 (4+2 \log (15))^2}{\left (2-x+x^2\right )^4} \]
________________________________________________________________________________________
Rubi [B] time = 0.27, antiderivative size = 108, normalized size of antiderivative = 3.60, number of steps used = 1, number of rules used = 1, integrand size = 162, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.006, Rules used = {2288} \begin {gather*} \frac {4 x e^{2 \log ^2(x)} \left (4 x^3-4 x^2+\left (x^3-x^2+2 x\right ) \log ^2(15)+4 \left (x^3-x^2+2 x\right ) \log (15)+8 x\right )}{x^{10}-5 x^9+20 x^8-50 x^7+105 x^6-161 x^5+210 x^4-200 x^3+160 x^2-80 x+32} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {4 e^{2 \log ^2(x)} x \left (8 x-4 x^2+4 x^3+4 \left (2 x-x^2+x^3\right ) \log (15)+\left (2 x-x^2+x^3\right ) \log ^2(15)\right )}{32-80 x+160 x^2-200 x^3+210 x^4-161 x^5+105 x^6-50 x^7+20 x^8-5 x^9+x^{10}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 0.97 \begin {gather*} \frac {4 e^{2 \log ^2(x)} x^2 (2+\log (15))^2}{\left (2-x+x^2\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.97, size = 70, normalized size = 2.33 \begin {gather*} \frac {4 \, {\left (x^{2} \log \left (15\right )^{2} + 4 \, x^{2} \log \left (15\right ) + 4 \, x^{2}\right )} e^{\left (2 \, \log \relax (x)^{2}\right )}}{x^{8} - 4 \, x^{7} + 14 \, x^{6} - 28 \, x^{5} + 49 \, x^{4} - 56 \, x^{3} + 56 \, x^{2} - 32 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {8 \, {\left (12 \, x^{3} + {\left (3 \, x^{3} - x^{2} - 2 \, x\right )} \log \left (15\right )^{2} - 4 \, x^{2} + 4 \, {\left (3 \, x^{3} - x^{2} - 2 \, x\right )} \log \left (15\right ) - 2 \, {\left (4 \, x^{3} + {\left (x^{3} - x^{2} + 2 \, x\right )} \log \left (15\right )^{2} - 4 \, x^{2} + 4 \, {\left (x^{3} - x^{2} + 2 \, x\right )} \log \left (15\right ) + 8 \, x\right )} \log \relax (x) - 8 \, x\right )} e^{\left (2 \, \log \relax (x)^{2}\right )}}{x^{10} - 5 \, x^{9} + 20 \, x^{8} - 50 \, x^{7} + 105 \, x^{6} - 161 \, x^{5} + 210 \, x^{4} - 200 \, x^{3} + 160 \, x^{2} - 80 \, x + 32}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 77, normalized size = 2.57
method | result | size |
risch | \(\frac {4 \left (\ln \relax (5)^{2}+2 \ln \relax (3) \ln \relax (5)+\ln \relax (3)^{2}+4 \ln \relax (5)+4 \ln \relax (3)+4\right ) x^{2} {\mathrm e}^{2 \ln \relax (x )^{2}}}{x^{8}-4 x^{7}+14 x^{6}-28 x^{5}+49 x^{4}-56 x^{3}+56 x^{2}-32 x +16}\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.69, size = 74, normalized size = 2.47 \begin {gather*} \frac {4 \, {\left (\log \relax (5)^{2} + 2 \, {\left (\log \relax (5) + 2\right )} \log \relax (3) + \log \relax (3)^{2} + 4 \, \log \relax (5) + 4\right )} x^{2} e^{\left (2 \, \log \relax (x)^{2}\right )}}{x^{8} - 4 \, x^{7} + 14 \, x^{6} - 28 \, x^{5} + 49 \, x^{4} - 56 \, x^{3} + 56 \, x^{2} - 32 \, x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.83, size = 54, normalized size = 1.80 \begin {gather*} \frac {4\,{\mathrm {e}}^{2\,{\ln \relax (x)}^2}\,{\left (\ln \left (15\right )+2\right )}^2}{{\left (x^2-x+2\right )}^3}+\frac {4\,{\mathrm {e}}^{2\,{\ln \relax (x)}^2}\,{\left (\ln \left (15\right )+2\right )}^2\,\left (x-2\right )}{{\left (x^2-x+2\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.63, size = 70, normalized size = 2.33 \begin {gather*} \frac {\left (16 x^{2} + 4 x^{2} \log {\left (15 \right )}^{2} + 16 x^{2} \log {\left (15 \right )}\right ) e^{2 \log {\relax (x )}^{2}}}{x^{8} - 4 x^{7} + 14 x^{6} - 28 x^{5} + 49 x^{4} - 56 x^{3} + 56 x^{2} - 32 x + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________