Optimal. Leaf size=23 \[ 6+5 \log (x)+x (2+x) \left (-3-x^2+3 \log (\log (x))\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 37, normalized size of antiderivative = 1.61, number of steps used = 14, number of rules used = 8, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.146, Rules used = {6688, 2330, 2298, 2309, 2178, 6742, 2520, 2522} \begin {gather*} -x^4-2 x^3-3 x^2+3 x^2 \log (\log (x))-6 x+6 x \log (\log (x))+5 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2298
Rule 2309
Rule 2330
Rule 2520
Rule 2522
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-6+\frac {5}{x}-6 x-6 x^2-4 x^3+\frac {3 (2+x)}{\log (x)}+6 (1+x) \log (\log (x))\right ) \, dx\\ &=-6 x-3 x^2-2 x^3-x^4+5 \log (x)+3 \int \frac {2+x}{\log (x)} \, dx+6 \int (1+x) \log (\log (x)) \, dx\\ &=-6 x-3 x^2-2 x^3-x^4+5 \log (x)+3 \int \left (\frac {2}{\log (x)}+\frac {x}{\log (x)}\right ) \, dx+6 \int (\log (\log (x))+x \log (\log (x))) \, dx\\ &=-6 x-3 x^2-2 x^3-x^4+5 \log (x)+3 \int \frac {x}{\log (x)} \, dx+6 \int \frac {1}{\log (x)} \, dx+6 \int \log (\log (x)) \, dx+6 \int x \log (\log (x)) \, dx\\ &=-6 x-3 x^2-2 x^3-x^4+5 \log (x)+6 x \log (\log (x))+3 x^2 \log (\log (x))+6 \text {li}(x)-3 \int \frac {x}{\log (x)} \, dx+3 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-6 \int \frac {1}{\log (x)} \, dx\\ &=-6 x-3 x^2-2 x^3-x^4+3 \text {Ei}(2 \log (x))+5 \log (x)+6 x \log (\log (x))+3 x^2 \log (\log (x))-3 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=-6 x-3 x^2-2 x^3-x^4+5 \log (x)+6 x \log (\log (x))+3 x^2 \log (\log (x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 21, normalized size = 0.91 \begin {gather*} 5 \log (x)-x (2+x) \left (3+x^2-3 \log (\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 35, normalized size = 1.52 \begin {gather*} -x^{4} - 2 \, x^{3} - 3 \, x^{2} + 3 \, {\left (x^{2} + 2 \, x\right )} \log \left (\log \relax (x)\right ) - 6 \, x + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 35, normalized size = 1.52 \begin {gather*} -x^{4} - 2 \, x^{3} - 3 \, x^{2} + 3 \, {\left (x^{2} + 2 \, x\right )} \log \left (\log \relax (x)\right ) - 6 \, x + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 37, normalized size = 1.61
method | result | size |
risch | \(\left (3 x^{2}+6 x \right ) \ln \left (\ln \relax (x )\right )-x^{4}-2 x^{3}-3 x^{2}-6 x +5 \ln \relax (x )\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 37, normalized size = 1.61 \begin {gather*} -x^{4} - 2 \, x^{3} + 3 \, x^{2} \log \left (\log \relax (x)\right ) - 3 \, x^{2} + 6 \, x \log \left (\log \relax (x)\right ) - 6 \, x + 5 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.12, size = 36, normalized size = 1.57 \begin {gather*} 5\,\ln \relax (x)-6\,x+\ln \left (\ln \relax (x)\right )\,\left (3\,x^2+6\,x\right )-3\,x^2-2\,x^3-x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 34, normalized size = 1.48 \begin {gather*} - x^{4} - 2 x^{3} - 3 x^{2} - 6 x + \left (3 x^{2} + 6 x\right ) \log {\left (\log {\relax (x )} \right )} + 5 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________