Optimal. Leaf size=26 \[ \frac {1}{9} x^2 \left (-11+3 x+e^x x-(4+x)^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.30, antiderivative size = 72, normalized size of antiderivative = 2.77, number of steps used = 34, number of rules used = 5, integrand size = 70, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {12, 1593, 2196, 2176, 2194} \begin {gather*} \frac {x^6}{9}-\frac {2 e^x x^5}{9}+\frac {10 x^5}{9}-\frac {10 e^x x^4}{9}+\frac {1}{9} e^{2 x} x^4+\frac {79 x^4}{9}-6 e^x x^3+30 x^3+81 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \left (1458 x+810 x^2+316 x^3+50 x^4+6 x^5+e^{2 x} \left (4 x^3+2 x^4\right )+e^x \left (-162 x^2-94 x^3-20 x^4-2 x^5\right )\right ) \, dx\\ &=81 x^2+30 x^3+\frac {79 x^4}{9}+\frac {10 x^5}{9}+\frac {x^6}{9}+\frac {1}{9} \int e^{2 x} \left (4 x^3+2 x^4\right ) \, dx+\frac {1}{9} \int e^x \left (-162 x^2-94 x^3-20 x^4-2 x^5\right ) \, dx\\ &=81 x^2+30 x^3+\frac {79 x^4}{9}+\frac {10 x^5}{9}+\frac {x^6}{9}+\frac {1}{9} \int e^{2 x} x^3 (4+2 x) \, dx+\frac {1}{9} \int \left (-162 e^x x^2-94 e^x x^3-20 e^x x^4-2 e^x x^5\right ) \, dx\\ &=81 x^2+30 x^3+\frac {79 x^4}{9}+\frac {10 x^5}{9}+\frac {x^6}{9}+\frac {1}{9} \int \left (4 e^{2 x} x^3+2 e^{2 x} x^4\right ) \, dx-\frac {2}{9} \int e^x x^5 \, dx-\frac {20}{9} \int e^x x^4 \, dx-\frac {94}{9} \int e^x x^3 \, dx-18 \int e^x x^2 \, dx\\ &=81 x^2-18 e^x x^2+30 x^3-\frac {94 e^x x^3}{9}+\frac {79 x^4}{9}-\frac {20 e^x x^4}{9}+\frac {10 x^5}{9}-\frac {2 e^x x^5}{9}+\frac {x^6}{9}+\frac {2}{9} \int e^{2 x} x^4 \, dx+\frac {4}{9} \int e^{2 x} x^3 \, dx+\frac {10}{9} \int e^x x^4 \, dx+\frac {80}{9} \int e^x x^3 \, dx+\frac {94}{3} \int e^x x^2 \, dx+36 \int e^x x \, dx\\ &=36 e^x x+81 x^2+\frac {40 e^x x^2}{3}+30 x^3-\frac {14 e^x x^3}{9}+\frac {2}{9} e^{2 x} x^3+\frac {79 x^4}{9}-\frac {10 e^x x^4}{9}+\frac {1}{9} e^{2 x} x^4+\frac {10 x^5}{9}-\frac {2 e^x x^5}{9}+\frac {x^6}{9}-\frac {4}{9} \int e^{2 x} x^3 \, dx-\frac {2}{3} \int e^{2 x} x^2 \, dx-\frac {40}{9} \int e^x x^3 \, dx-\frac {80}{3} \int e^x x^2 \, dx-36 \int e^x \, dx-\frac {188}{3} \int e^x x \, dx\\ &=-36 e^x-\frac {80 e^x x}{3}+81 x^2-\frac {40 e^x x^2}{3}-\frac {1}{3} e^{2 x} x^2+30 x^3-6 e^x x^3+\frac {79 x^4}{9}-\frac {10 e^x x^4}{9}+\frac {1}{9} e^{2 x} x^4+\frac {10 x^5}{9}-\frac {2 e^x x^5}{9}+\frac {x^6}{9}+\frac {2}{3} \int e^{2 x} x \, dx+\frac {2}{3} \int e^{2 x} x^2 \, dx+\frac {40}{3} \int e^x x^2 \, dx+\frac {160}{3} \int e^x x \, dx+\frac {188 \int e^x \, dx}{3}\\ &=\frac {80 e^x}{3}+\frac {80 e^x x}{3}+\frac {1}{3} e^{2 x} x+81 x^2+30 x^3-6 e^x x^3+\frac {79 x^4}{9}-\frac {10 e^x x^4}{9}+\frac {1}{9} e^{2 x} x^4+\frac {10 x^5}{9}-\frac {2 e^x x^5}{9}+\frac {x^6}{9}-\frac {1}{3} \int e^{2 x} \, dx-\frac {2}{3} \int e^{2 x} x \, dx-\frac {80}{3} \int e^x x \, dx-\frac {160 \int e^x \, dx}{3}\\ &=-\frac {80 e^x}{3}-\frac {e^{2 x}}{6}+81 x^2+30 x^3-6 e^x x^3+\frac {79 x^4}{9}-\frac {10 e^x x^4}{9}+\frac {1}{9} e^{2 x} x^4+\frac {10 x^5}{9}-\frac {2 e^x x^5}{9}+\frac {x^6}{9}+\frac {1}{3} \int e^{2 x} \, dx+\frac {80 \int e^x \, dx}{3}\\ &=81 x^2+30 x^3-6 e^x x^3+\frac {79 x^4}{9}-\frac {10 e^x x^4}{9}+\frac {1}{9} e^{2 x} x^4+\frac {10 x^5}{9}-\frac {2 e^x x^5}{9}+\frac {x^6}{9}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 22, normalized size = 0.85 \begin {gather*} \frac {1}{9} x^2 \left (27-\left (-5+e^x\right ) x+x^2\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 53, normalized size = 2.04 \begin {gather*} \frac {1}{9} \, x^{6} + \frac {10}{9} \, x^{5} + \frac {1}{9} \, x^{4} e^{\left (2 \, x\right )} + \frac {79}{9} \, x^{4} + 30 \, x^{3} + 81 \, x^{2} - \frac {2}{9} \, {\left (x^{5} + 5 \, x^{4} + 27 \, x^{3}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 53, normalized size = 2.04 \begin {gather*} \frac {1}{9} \, x^{6} + \frac {10}{9} \, x^{5} + \frac {1}{9} \, x^{4} e^{\left (2 \, x\right )} + \frac {79}{9} \, x^{4} + 30 \, x^{3} + 81 \, x^{2} - \frac {2}{9} \, {\left (x^{5} + 5 \, x^{4} + 27 \, x^{3}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.08, size = 56, normalized size = 2.15
method | result | size |
risch | \(\frac {{\mathrm e}^{2 x} x^{4}}{9}+\frac {\left (-2 x^{5}-10 x^{4}-54 x^{3}\right ) {\mathrm e}^{x}}{9}+\frac {x^{6}}{9}+\frac {10 x^{5}}{9}+\frac {79 x^{4}}{9}+30 x^{3}+81 x^{2}\) | \(56\) |
default | \(30 x^{3}+81 x^{2}+\frac {79 x^{4}}{9}+\frac {10 x^{5}}{9}+\frac {x^{6}}{9}+\frac {{\mathrm e}^{2 x} x^{4}}{9}-6 \,{\mathrm e}^{x} x^{3}-\frac {10 \,{\mathrm e}^{x} x^{4}}{9}-\frac {2 x^{5} {\mathrm e}^{x}}{9}\) | \(57\) |
norman | \(30 x^{3}+81 x^{2}+\frac {79 x^{4}}{9}+\frac {10 x^{5}}{9}+\frac {x^{6}}{9}+\frac {{\mathrm e}^{2 x} x^{4}}{9}-6 \,{\mathrm e}^{x} x^{3}-\frac {10 \,{\mathrm e}^{x} x^{4}}{9}-\frac {2 x^{5} {\mathrm e}^{x}}{9}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.70, size = 53, normalized size = 2.04 \begin {gather*} \frac {1}{9} \, x^{6} + \frac {10}{9} \, x^{5} + \frac {1}{9} \, x^{4} e^{\left (2 \, x\right )} + \frac {79}{9} \, x^{4} + 30 \, x^{3} + 81 \, x^{2} - \frac {2}{9} \, {\left (x^{5} + 5 \, x^{4} + 27 \, x^{3}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.07, size = 20, normalized size = 0.77 \begin {gather*} \frac {x^2\,{\left (5\,x-x\,{\mathrm {e}}^x+x^2+27\right )}^2}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.15, size = 60, normalized size = 2.31 \begin {gather*} \frac {x^{6}}{9} + \frac {10 x^{5}}{9} + \frac {x^{4} e^{2 x}}{9} + \frac {79 x^{4}}{9} + 30 x^{3} + 81 x^{2} + \frac {\left (- 18 x^{5} - 90 x^{4} - 486 x^{3}\right ) e^{x}}{81} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________