Optimal. Leaf size=25 \[ \log \left (10-x+\frac {-2+i \pi +\log \left (-4+3 e^5\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 36, normalized size of antiderivative = 1.44, number of steps used = 5, number of rules used = 4, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {6, 1594, 1628, 628} \begin {gather*} -\log (x)+\log \left (i x^2-10 i x+\pi +i \left (2-\log \left (3 e^5-4\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 628
Rule 1594
Rule 1628
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2-i \pi -x^2-\log \left (-4+3 e^5\right )}{10 x^2-x^3+x \left (-2+i \pi +\log \left (-4+3 e^5\right )\right )} \, dx\\ &=\int \frac {2-i \pi -x^2-\log \left (-4+3 e^5\right )}{x \left (-2+i \pi +10 x-x^2+\log \left (-4+3 e^5\right )\right )} \, dx\\ &=\int \left (-\frac {1}{x}+\frac {2 i (-5+x)}{\pi -10 i x+i x^2+i \left (2-\log \left (-4+3 e^5\right )\right )}\right ) \, dx\\ &=-\log (x)+2 i \int \frac {-5+x}{\pi -10 i x+i x^2+i \left (2-\log \left (-4+3 e^5\right )\right )} \, dx\\ &=-\log (x)+\log \left (\pi -10 i x+i x^2+i \left (2-\log \left (-4+3 e^5\right )\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.02, size = 102, normalized size = 4.08 \begin {gather*} -i \tan ^{-1}\left (\frac {\pi }{2-10 x+x^2-\log \left (-4+3 e^5\right )}\right )-\log (x)+\frac {1}{2} \log \left (4+\pi ^2-40 x+104 x^2-20 x^3+x^4-4 \log \left (-4+3 e^5\right )+20 x \log \left (-4+3 e^5\right )-2 x^2 \log \left (-4+3 e^5\right )+\log ^2\left (-4+3 e^5\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.47, size = 23, normalized size = 0.92 \begin {gather*} \log \left (x^{2} - 10 \, x - \log \left (-3 \, e^{5} + 4\right ) + 2\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 24, normalized size = 0.96 \begin {gather*} \log \left (x^{2} - 10 \, x - \log \left (-3 \, e^{5} + 4\right ) + 2\right ) - \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 24, normalized size = 0.96
method | result | size |
default | \(-\ln \relax (x )+\ln \left (x^{2}-\ln \left (-3 \,{\mathrm e}^{5}+4\right )-10 x +2\right )\) | \(24\) |
norman | \(-\ln \relax (x )+\ln \left (-x^{2}+\ln \left (-3 \,{\mathrm e}^{5}+4\right )+10 x -2\right )\) | \(24\) |
risch | \(-\ln \left (-x \right )+\ln \left (x^{2}-\ln \left (-3 \,{\mathrm e}^{5}+4\right )-10 x +2\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 23, normalized size = 0.92 \begin {gather*} \log \left (x^{2} - 10 \, x - \log \left (-3 \, e^{5} + 4\right ) + 2\right ) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 23, normalized size = 0.92 \begin {gather*} \ln \left (x^2-10\,x-\ln \left (4-3\,{\mathrm {e}}^5\right )+2\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.16, size = 24, normalized size = 0.96 \begin {gather*} - \log {\relax (x )} + \log {\left (x^{2} - 10 x - \log {\left (-4 + 3 e^{5} \right )} + 2 - i \pi \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________