Optimal. Leaf size=30 \[ \frac {x}{e^6-x+x \left (-e^x+4 \left (-e^3+x\right )\right )+\log (3)} \]
________________________________________________________________________________________
Rubi [F] time = 1.59, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^6-4 x^2+e^x x^2+\log (3)}{e^{12}+x^2+16 e^6 x^2+e^{2 x} x^2-8 x^3+16 x^4+e^6 \left (-2 x-8 e^3 x+8 x^2\right )+e^3 \left (8 x^2-32 x^3\right )+\left (2 e^6-2 x-8 e^3 x+8 x^2\right ) \log (3)+\log ^2(3)+e^x \left (-2 e^6 x+2 x^2+8 e^3 x^2-8 x^3-2 x \log (3)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^6-4 x^2+e^x x^2+\log (3)}{e^{12}+e^{2 x} x^2+\left (1+16 e^6\right ) x^2-8 x^3+16 x^4+e^6 \left (-2 x-8 e^3 x+8 x^2\right )+e^3 \left (8 x^2-32 x^3\right )+\left (2 e^6-2 x-8 e^3 x+8 x^2\right ) \log (3)+\log ^2(3)+e^x \left (-2 e^6 x+2 x^2+8 e^3 x^2-8 x^3-2 x \log (3)\right )} \, dx\\ &=\int \frac {-4 x^2+e^x x^2+e^6 \left (1+\frac {\log (3)}{e^6}\right )}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2} \, dx\\ &=\int \left (\frac {e^6-\left (5+4 e^3\right ) x^2+4 x^3+\log (3)+x \left (e^6+\log (3)\right )}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2}+\frac {x}{e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )}\right ) \, dx\\ &=\int \frac {e^6-\left (5+4 e^3\right ) x^2+4 x^3+\log (3)+x \left (e^6+\log (3)\right )}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2} \, dx+\int \frac {x}{e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )} \, dx\\ &=\int \frac {x}{e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )} \, dx+\int \left (\frac {\left (-5-4 e^3\right ) x^2}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2}+\frac {4 x^3}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2}+\frac {x \left (e^6+\log (3)\right )}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2}+\frac {e^6 \left (1+\frac {\log (3)}{e^6}\right )}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2}\right ) \, dx\\ &=4 \int \frac {x^3}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2} \, dx+\left (-5-4 e^3\right ) \int \frac {x^2}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2} \, dx+\left (e^6+\log (3)\right ) \int \frac {1}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2} \, dx+\left (e^6+\log (3)\right ) \int \frac {x}{\left (e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )\right )^2} \, dx+\int \frac {x}{e^x x+\left (1+4 e^3\right ) x-4 x^2-e^6 \left (1+\frac {\log (3)}{e^6}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.50, size = 32, normalized size = 1.07 \begin {gather*} -\frac {x}{-e^6+x+4 e^3 x+e^x x-4 x^2-\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 27, normalized size = 0.90 \begin {gather*} \frac {x}{4 \, x^{2} - 4 \, x e^{3} - x e^{x} - x + e^{6} + \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.91, size = 27, normalized size = 0.90 \begin {gather*} \frac {x}{4 \, x^{2} - 4 \, x e^{3} - x e^{x} - x + e^{6} + \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 28, normalized size = 0.93
method | result | size |
norman | \(\frac {x}{-4 x \,{\mathrm e}^{3}+4 x^{2}-{\mathrm e}^{x} x +\ln \relax (3)+{\mathrm e}^{6}-x}\) | \(28\) |
risch | \(\frac {x}{-4 x \,{\mathrm e}^{3}+4 x^{2}-{\mathrm e}^{x} x +\ln \relax (3)+{\mathrm e}^{6}-x}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 28, normalized size = 0.93 \begin {gather*} \frac {x}{4 \, x^{2} - x {\left (4 \, e^{3} + 1\right )} - x e^{x} + e^{6} + \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\mathrm {e}}^6+\ln \relax (3)+x^2\,{\mathrm {e}}^x-4\,x^2}{{\mathrm {e}}^{12}-{\mathrm {e}}^x\,\left (2\,x\,{\mathrm {e}}^6+2\,x\,\ln \relax (3)-8\,x^2\,{\mathrm {e}}^3-2\,x^2+8\,x^3\right )-\ln \relax (3)\,\left (2\,x-2\,{\mathrm {e}}^6+8\,x\,{\mathrm {e}}^3-8\,x^2\right )-{\mathrm {e}}^6\,\left (2\,x+8\,x\,{\mathrm {e}}^3-8\,x^2\right )+x^2\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^3\,\left (8\,x^2-32\,x^3\right )+16\,x^2\,{\mathrm {e}}^6+{\ln \relax (3)}^2+x^2-8\,x^3+16\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 27, normalized size = 0.90 \begin {gather*} - \frac {x}{- 4 x^{2} + x e^{x} + x + 4 x e^{3} - e^{6} - \log {\relax (3 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________