Optimal. Leaf size=17 \[ -2+\frac {1}{4} \left (-1+x^2\right ) \left (5+\log \left (x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 25, normalized size of antiderivative = 1.47, number of steps used = 6, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {12, 14, 2304} \begin {gather*} \frac {5 x^2}{4}+\frac {1}{4} x^2 \log \left (x^2\right )-\frac {\log (x)}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-1+6 x^2+x^2 \log \left (x^2\right )}{x} \, dx\\ &=\frac {1}{2} \int \left (\frac {-1+6 x^2}{x}+x \log \left (x^2\right )\right ) \, dx\\ &=\frac {1}{2} \int \frac {-1+6 x^2}{x} \, dx+\frac {1}{2} \int x \log \left (x^2\right ) \, dx\\ &=-\frac {x^2}{4}+\frac {1}{4} x^2 \log \left (x^2\right )+\frac {1}{2} \int \left (-\frac {1}{x}+6 x\right ) \, dx\\ &=\frac {5 x^2}{4}-\frac {\log (x)}{2}+\frac {1}{4} x^2 \log \left (x^2\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 25, normalized size = 1.47 \begin {gather*} \frac {5 x^2}{4}-\frac {\log (x)}{2}+\frac {1}{4} x^2 \log \left (x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 17, normalized size = 1.00 \begin {gather*} \frac {5}{4} \, x^{2} + \frac {1}{4} \, {\left (x^{2} - 1\right )} \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 21, normalized size = 1.24 \begin {gather*} \frac {1}{4} \, x^{2} \log \left (x^{2}\right ) + \frac {5}{4} \, x^{2} - \frac {1}{4} \, \log \left (x^{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 20, normalized size = 1.18
method | result | size |
norman | \(\frac {5 x^{2}}{4}+\frac {x^{2} \ln \left (x^{2}\right )}{4}-\frac {\ln \relax (x )}{2}\) | \(20\) |
risch | \(\frac {5 x^{2}}{4}+\frac {x^{2} \ln \left (x^{2}\right )}{4}-\frac {\ln \relax (x )}{2}\) | \(20\) |
derivativedivides | \(\frac {x^{2} \ln \left (x^{2}\right )}{4}+\frac {5 x^{2}}{4}-\frac {\ln \left (x^{2}\right )}{4}\) | \(22\) |
default | \(\frac {x^{2} \ln \left (x^{2}\right )}{4}+\frac {5 x^{2}}{4}-\frac {\ln \left (x^{2}\right )}{4}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 19, normalized size = 1.12 \begin {gather*} \frac {1}{4} \, x^{2} \log \left (x^{2}\right ) + \frac {5}{4} \, x^{2} - \frac {1}{2} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.36, size = 21, normalized size = 1.24 \begin {gather*} \frac {x^2\,\ln \left (x^2\right )}{4}-\frac {\ln \left (x^2\right )}{4}+\frac {5\,x^2}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 1.18 \begin {gather*} \frac {x^{2} \log {\left (x^{2} \right )}}{4} + \frac {5 x^{2}}{4} - \frac {\log {\relax (x )}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________